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SUMMARY

Signaling pathway components are well studied, but how they mediate cell-type-specific transcription re-
sponses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model,
we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can
be learned genome wide by deep learning models. Through model interpretation and experimental validation,
we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a
nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also
discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular
dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-pro-
tein interactions that depend on the DNA template. These results show that the response to signaling path-
ways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the

mechanisms by which signaling effectors influence cell-type-specific enhancer activity.

INTRODUCTION

Signaling pathways are critical for cell fate decisions during
development, the generation of cell types in vitro, and therapeu-
tic interventions, which often target-specific signaling path-
ways.! The signaling components and transcription factors
(TFs) that function as canonical effectors of a pathway are typi-
cally well studied. Such signaling effectors recognize specific
DNA sequence motifs either directly or find obligate partner
TFs with DNA binding specificity. However, signaling pathways
are reiteratively used during development, and which cis-regula-
tory sequences are bound by these TFs and become active en-
hancers that regulate target genes is highly complex and poorly
understood.?® Thus, signaling pathways are critical for gene
regulation, but their target specificity is one of the least under-
stood areas of enhancer biology, making it difficult to predict
the activity of enhancers or modify their function during develop-
ment through targeted mutations.®™”

Here, we hypothesized that the binding of signaling effectors is
encoded in the cis-regulatory sequences. This hypothesis is
supported by studies on individual enhancers showing that the
target gene specificity of a signaling pathway depends on cell-
type-specific TFs.?® Furthermore, genetic experiments showed
that cell-type-specific TFs help determine where signaling effec-
tors bind.?~'® However, there is no systematic approach to cap-
ture the genome-wide cis-regulatory sequence rules, identify
relevant cell-type-specific TFs, and characterize the molecular
mechanisms by which they influence enhancer activation.'”

Capturing genome-wide cis-regulatory sequence rules in a
cell-type-specific manner is an ideal task for a deep learning
model. By learning to predict TF binding data from DNA
sequence, convolutional neural networks learn complex
sequence rules in an unbiased way, and the rules can be ex-
tracted from the trained models using interpretation tools.'> "
A key advantage is the inherent predictive accuracy and the
genome-wide applicability of the learned sequence rules, some-
thing that cannot be achieved by studying motifs on individual
enhancers experimentally or by analyzing motif compositions
using traditional methods.

Predictive accuracy is the first step during training, where the
model learns to predict TF binding profiles from sequence. The
genome-wide applicability is ensured by testing the performance
on withheld data that the model has not seen during training.
Another advantage is that the sequence rules are learned de
novo in an inherently combinatorial way on large amounts of
data. Only upon achieving accurate predictions can the model
be interpreted to extract the learned rules. Such models not
only learn TF motifs, but also measurements of their relative affin-
ities and the syntax rules, and thus the distance relationships by
which motifs cooperate with each other.'®17:20:22:23

We reasoned that interpretable deep learning might identify
which cell-type-specific TF motifs contribute to the response
to signaling, and that the motif syntax rules could pinpoint to po-
tential molecular mechanisms. TF cooperativity is often studied
with the assumption that TFs interact with each other through
protein-protein interactions, exemplified by the pioneering
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work of the interferon-beta enhanceosome.?*~*® For such pro-
tein-protein interactions to occur, two motifs have to be well
positioned at close distances, which should be reflected in the
syntax rules. On the other hand, such strictly spaced motifs
are not frequently observed in the genome, raising the question
of whether TF binding cooperativity often occurs through more
flexible motif syntax.?”° Indeed, deep learning models suggest
the existence of a soft motif syntax, which occurs at variable
motif distances within ~150 bp, with stronger TF cooperativity
predicted at closer distances.'**°

Whether such syntax rules exist for signaling effectors has pre-
viously been difficult to decipher. ChlP-seq binding data tend to
be of low resolution and display low levels of signal when the TF
binds indirectly through a partner TF.'%""® Likewise, individu-
ally manipulating enhancer sequences in vivo limits throughput,
and the effects can be difficult to interpret since they may be
enhancer-specific or caused by the inadvertent disruption of
other important sequences.’®" Large-scale reporter assays,
on the other hand, have produced conflicting results on whether
motif syntax is important and, if so, their effects have only been
measured for short motif distances and not been mechanistically
analyzed.'®?"*>=3" For these reasons, TF binding cooperativity
downstream of signaling pathways has not been systematically
studied from a sequence perspective.

To test whether the binding of signaling effectors is sequence
encoded and follows syntax rules, we performed TF binding ex-
periments at the highest resolution and leveraged our previously
developed deep learning model BPNet to predict the data at
base resolution from genomic sequences of 1 kb, '%2%:22:38:39
This approach has high predictive accuracy and optimally re-
solves sequence rules between closely spaced motifs within en-
hancers.'® Since the model does not predict enhancer activity or
target genes, we evaluated and validated these downstream as-
pects using traditional methods.

As a model system for our approach, we studied the Hippo
signaling pathway in mouse trophoblast stem cells (TSCs). Hip-
po signaling is critical for specifying trophoblast versus inner cell
mass cell fate in the early mouse embryo.“°*> When cells of the
embryo sense that they are facing the outside, i.e., less cell den-
sity, they polarize and inactivate the Hippo pathway. This causes
YAP1/TAZ to translocate to the nucleus and bind to TEAD4,
which, like all TEAD family members, binds to a consensus
Tead motif.*"**4>¢ Other TFs known to be important for TSC
identity include CDX2, TFAP2C, and GATA3.“”°* TSCs are
therefore an ideal system to dissect the interactions between
Hippo signaling effectors and cell-type-specific TFs in enhancer
activation.

Here, we show that the binding of the signaling effectors
YAP1/TEAD4 is specified by cis-regulatory sequence rules that
apply genome-wide. We identified thousands of novel active en-
hancers in TSCs and show that their activity is driven by YAP1,
which binds DNA with the help of cell-type-specific TFs such
as TFAP2C. While the Tfap2c-Tead motif synergy follows a soft
motif syntax, we also identified the Tead double motif as medi-
ating strong cooperativity through strict syntax. Based on our
molecular dynamics (MD) simulations, the strict distance be-
tween the two Tead motifs is required for two TEAD4 to engage
in labile protein-protein interactions, suggesting that the TEAD4
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effector complex is assembled on DNA with the help of Hippo
signaling. This demonstrates how deep learning models can un-
cover precise sequence rules and potential mechanisms by
which signaling effectors bind in the genome to produce cell-
type-specific effects.

RESULTS

A deep learning model reveals combinatorial binding
motifs for Hippo TFs

We generated genome-wide, high-resolution binding data for two
Hippo signaling effectors (TEAD4 and YAP1) and for potential
TSC-specific partner TFs (CDX2, TFAP2C, and GATAS) by using
a ChIP-exo technique called ChlIP-nexus,*® in which an exonu-
clease step generates narrow and sharp binding footprints
(Figures 1A and S1A). We used TSCs derived from mouse blasto-
cysts®® and confirmed that they retain features of endogenous tro-
phectoderm (TE) cells by reintegrating them into the TE layer of
blastocyst embryos in an aggregation assay (Figure S1B). The
ChIP-nexus binding data revealed that YAP1 and TEAD4 were
more correlated with each other than any other TF pair (Figure 1B),
consistent with YAP1 binding to DNA through TEAD4.°5-°8

We then trained the deep learning model BPNet to predict the
base-resolution binding profiles of all TFs from 187,775 repro-
ducibly bound genomic regions (Figure 1C) by separating chro-
mosomes into training, validation, and test groups to confirm
model accuracy. We also performed cross-validation on
different chromosome combinations to ensure model stability
(Figure S1F). For all TFs, we obtained high prediction accuracy
for the read counts, as well as profiles and footprint positions
on a par with the similarity between replicate experiments
(Figures 1D and S1C-S1E). Examples include the putative en-
hancers of important trophoblast genes such as Fgfr1**°° (Fig-
ure 1D), Amotl2, Pard3b, and Krt8/18°°°? (Figures S1G and
S1l). These results show that the model learned general rules
for this cell type to predict TF binding anywhere in the genome
from sequence alone.

To understand which motifs contribute to the binding of the
signaling effectors TEAD4 and YAP1, we extracted de novo
learned motifs. Using an attribution method,®® we assigned
contribution scores to all bases in the input sequences and
then summarized learned motifs as a contribution weight matrix
(CWM).°* The CWM motifs were then used to map “contrib-
uting” motif instances in each genomic region (Figure 1C). These
mapped motifs were highly congruent with experimentally
observed and predicted TF footprints (Figures 1D and S1G-S1l).

Among the discovered motifs were the known consensus mo-
tifs of the profiled TFs (Figure 1E) and two unexpected motifs: a
strictly spaced Tead double motif and a strictly spaced Gata3
double motif (Figure 1E). These motifs are directly bound by
TEAD4 and GATABS, respectively, as confirmed by the sharpness
of the ChlP-nexus footprints (Figure 1F). YAP1 also showed
sharp binding footprints on the Tead motifs, suggesting a tight
physical association between YAP1 and TEAD4 on DNA. Given
YAP1’s stronger dependency on Hippo signaling, we focused
on understanding how YAP1 binding is influenced by other
TFs. Notably, the model learned motifs for TFs that we did not
profile, including JUN-FOS (AP-1), CTCF, and ELF5 (Figure S1F).
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Figure 1. BPNet suggests combinatorial binding motifs for Hippo TFs

(A) Experimental design to map high-resolution binding of signaling and cell-type-specific TFs in mouse TSCs.

(B) Spearman correlations of the ChIP-nexus read counts between TFs at non-promoter binding regions show that YAP1 and TEAD4 binding are highly
correlated.

(C) Schematic of the multi-task BPNet model, trained to predict ChlP-nexus TF binding from DNA sequence, and the interpretation tools that identify and map
contributing motifs for each TF.

(D) At the Fgfr1 enhancer (mm10-chr8:25503600-2550400) not seen during model training, observed and BPNet-predicted base-resolution binding are visibly
similar for each TF (+, strand on top; —, strand below). Quantifications of this similarity by Jensen-Shannon distance (0 = perfect concordance, 1 = no similarity,
shown globally in Figure S1D) give values of 0.31 (TFAP2C), 0.32 (TEAD4), 0.32 (CDX2), 0.30 (GATAS3), and 0.43 (YAP1). BPNet-mapped motifs are shown below.
(E) Learned motifs are shown as frequency-based position weight matrix (PWM) and contribution weight matrix (CWM), where the base height reflects the
contribution to the TF binding predictions.

(F) Average ChIP-nexus binding footprints of all TFs at BPNet-mapped motifs, shown as reads per million (RPM), with values on + strand on top and — strand
below. Sharp footprints typically indicate direct binding of the TF to the motif. YAP1 has sharp footprints on the Tead motifs despite binding indirectly.

(G) The importance of motifs toward YAP1 binding was assessed by two interpretation methods, one based on the contribution scores from genomic instances
(blue on the left) and one based on rules derived in silico without genomic context (olive on the right). Contribution scores are derived by DeepLIFT relative to a
dinucleotide shuffled control sequence on a log scale, thus have no unit. In the second method (right plot), motifs are injected many times into a randomized
background that contains a Tead single motif (ACATTCCTG) within 150 bp. The average predicted YAP1 binding enhancement over no added query motif is
calculated.

We then used two complementary model interpretation
methods'® to measure whether and how much, on average,
each motif influences YAP1 binding (Figure 1G). The first method
uses the contribution scores of mapped motifs from genomic re-
gions (Figure 1G, left) and measures each motif’s influence
across all observed instances in vivo. The second method uses
in silico experiments to measure each motif’s influence in a ran-
domized sequence background (Figure 1G, right), and thus tests
the learned rules in isolation without the complexity of genomic

sequences. We injected a Tead single motif with or without
another motif and let the model predict how much any given
motif enhanced the binding of YAP1 to the Tead single motif.
Both methods revealed similar results, providing internal valida-
tion of our model interpretation.

The Tead motifs, which we will refer to as Tead single and Tead
double motifs, were both important as expected, but the AP-1
and Tfap2c motifs also had a sizable contribution to YAP1 bind-
ing (Figure 1G). AP-1 is present in many cell types and has
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Figure 2. YAP1 binding correlates with enhancer activity markers

Position (bp)

(A) An example of an active enhancer ~100 kb downstream of the Bmp7 gene, showing ChIP-nexus TF binding for TFAP2C, TEAD4, and YAP1 alongside BPNet-
mapped motifs Tead and Tfap2c and predicted YAP1 binding contribution. Additional tracks are the fragment coverage for ATAC-seq, H3K27ac ChlIP-seq, Pol Il

ChIP-nexus data, and nascent RNA-seq derived from TT-seq.

(B) Profile heatmaps of TEAD4 and YAP1 ChlP-nexus data at the 5,000 TEAD4 peaks with the highest YAP1 binding (top) and 5,000 peaks with median YAP1
binding (bottom). Regions with highest YAP1 have an active enhancer signature of H3K27ac ChlP-seq, Pol Il ChIP-nexus, and Nascent-RNA reads (top).
(C) A heatmap depicting Spearman correlations between ChlP-nexus TF binding and the enhancer activity markers at the top 4,000 non-promoter peaks

containing their motif. YAP1 correlates best, followed by TFAP2C.

previously been shown to cooperate with TEAD and YAP in can-
cer cell lines,®>® confirming the model’s predictions. However,
we also identified a strong contribution from TFAP2C, which is
critical for specifying TE.*7+48:54:69-71

The strong contribution of TFAP2C suggests that Hippo
signaling is influenced by cell-type-specific TFs as hypothe-
sized. Interestingly though, the model did not assign all cell-
type-specific TF motifs the same importance (Figure 1G). For
example, CDX2 and GATAS3 were not predicted to help YAP1
bind, although they are critical for trophoblast identity.?>?
This suggests that the rules by which TFs boost the binding of
signaling effectors are not obvious, but that, with the help of TF
binding data, these rules can be learned with a deep learning
model.

YAP1 binding correlates with markers of enhancer
activity
Having analyzed TSC-specific YAP1 binding, we investigated
whether high YAP1 binding levels are indicative of enhancer acti-
vation. We expect YAP1 to be a strong activator based on previ-
ous molecular evidence,”~"* but many other TFs have transac-
tivation domains, and thus it is unclear how much YAP1
contributes to enhancer activation at a genome-wide level.
Since no individual assay unambiguously measures enhancer
activity,”® we performed experiments in TSCs to profile multiple
markers of active enhancers: ChlP-nexus for RNA polymerase ||
(Pol 1l), TT-seq to capture enhancer transcription, ATAC-seq to
measure chromatin accessibility, and ChIP-seq for H3K27ac

4 Cell Genomics 5, 100821, April 9, 2025

found on nucleosomes flanking active enhancers’®"® (Fig-
ure S2A). We identified thousands of enhancers that showed
enhancer transcription, chromatin accessibility, and H3K27ac,
thus meeting our definition of being active enhancers
(Table S4). We selected a few enhancers near important tropho-
blast genes for further characterization. Named after the nearest
gene, these include a Bmp7, Rin3, Ezr, Cited2, Amotl2, Bmp?7,
Dst, and Tjp1 enhancer. They were validated by cloning the min-
imal central region into a luciferase reporter assay and
measuring their activity in TSCs (Figure S2B).

These data revealed that active enhancers are indeed associ-
ated with high levels of YAP1 binding (Figures 2A and S2E-S2H).
As an example, strong binding footprints of TFAP2C, TEAD4,
and YAP1 are found at the putative downstream Bmp7
enhancer, and the contribution scores show that BPNet used
the Tfap2c and Tead single motifs to predict YAP1 binding (Fig-
ure 2A). This region possesses all the characteristic features of
active enhancers, with central ATAC-seq accessibility, flanking
H3K27ac signal, Pol Il occupancy, and bidirectional nascent
RNA transcription (Figure 2A).

To examine the global correlation between YAP1 binding and
the markers of enhancer activity, we selected all TEAD4 peaks
with a Tead motif; we then compared the 5,000 regions with
the highest YAP1 binding to 5,000 regions with median levels
of YAP1 binding (Figure 2B). The top YAP1 bound regions
showed strong H3K27ac signal, Pol Il binding, and nascent tran-
scription adjacent to the central region, while no strong evidence
of enhancer activity was observed for the more lowly bound set
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(Figure 2B). To quantify each TF’s effect, we calculated the pair-
wise correlation between each TF’s binding and enhancer activ-
ity markers (H3K27ac, Pol Il, and nascent RNA) (Figure 2C).
Among all TFs, YAP1 binding correlated best with the enhancer
activity markers. Given the strong transactivation potential of
YAP1,7277%79 we conclude that YAP1 binding is an important
determinant for enhancer activation in TSCs, and hence predict-
ing YAP1 binding should serve as a proxy for predicting
enhancer activity.

Enhancer activation involves DNA-distance-dependent
TF cooperativity

If YAP1 binding occurs cooperatively and promotes enhancer
activation, the cooperating motifs might activate transcription
synergistically. Synergistic activation by two motifs has been
documented,'®8°%2 put the mechanisms are not clear and could
vary. We focused on the Tead single and Tfap2c motifs since this
motif pair is frequently found at active enhancers (Figure 2). In
addition, genes near these active enhancers are enriched for
cell fate commitment and GTPase regulation (Figure S2C), consis-
tent with previous studies.**°"*%° Synergistic activation could
occur if the Tead single and Tfap2c motif not only contribute to
activation on their own but cause additional activation by promot-
ing YAP1 binding. If so, the activity of such an enhancer would
depend on BPNet-learned syntax rules for YAP1 binding and
thus may depend on the distance between the motifs.

To test for synergistic activation, we performed luciferase as-
says using the 200 bp minimal Bmp7 enhancer, which has a
Tead single and Tfap2c motif (shown in Figure 2A). To perturb
combinations of these motifs in a controlled way while reducing
the chance of introducing unknown variables, we used BPNet:
for each motif, we mutated the two bases that contributed
most to the predictions and tested whether this led to decreased
YAP1 binding (Figure S2D).

Luciferase assays showed that mutating either motif alone
was sufficient to strongly reduce the activity while mutating
both almost completely abolished the activity (Figure 3A).
Thus, in the presence of one motif, the putative Bmp7 enhancer
produced only moderate activity, while together, they resulted in
activity that exceeded the sum of each motif’s effect. These re-
sults show that the Tead single and Tfap2c motifs mediate acti-
vation synergistically, presumably at least in part by increasing
YAP1 binding.

To test whether the Tfap2c motif boosts YAP1 binding in a dis-
tance-dependent manner, we examined the contribution scores
of all Tfap2c motifs found near a Tead single motif. This showed
that Tfap2c motifs had significantly higher scores in regions
where the motif was within nucleosome distance (<150 bp) and
showed even higher scores when closer (Wilcoxon test
p < 2e—16, Figures 3B and S3A). When we plotted these contri-
bution scores in the genomic regions directly, they visually
decreased with further distances between the Tead single motif
and the Tfap2c motif (Figures 3C, S3C, and S3D). This suggests
that TFAP2C enhances YAP1 binding in a distance-dependent
manner through soft motif syntax.

We next investigated whether TFAP2C directly helps the
recruitment of YAP1 or whether the effect on YAP1 binding is
mediated through increased TEAD4 binding (Figure 3D). To
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distinguish between these possibilities, we performed in silico
experiments with randomized sequences and analyzed the bind-
ing enhancement of TEAD4, YAP1, and TFAP2C with different
motif distances. This revealed that YAP1 and TEAD4 binding
both depend on the distance of the nearby Tfap2c motif, causing
an over 2.5-fold increase in binding of both when the Tfap2c
motif is close (Figures 3D and S3B). Notably, the reverse was
not necessarily true: TFAP2C binding was not substantially
increased (<1.5-fold) in the presence of a nearby Tead single
motif (Figure 3D), but showed some increase in the presence
of a Tead double motif (Figures S3B and S3D). Given that binding
cooperativity is usually assumed to be mutual,®* this direction-
ality is surprising but consistent with previous observations of
soft motif syntax.'®

To validate the Tead single-Tfap2c soft motif syntax, we per-
formed luciferase reporter experiments on the putative Rin3,
Dst, and Adcy7 enhancers. Using BPNet predictions as a guide
for designing experiments, we changed the distances between
the Tead single and Tfap2c motifs at three independent regions,
by deleting the Tead single motif through minimal mutations and
introducing the same motif at a different location (Figures 3F and
S3E). In all three cases, the reporter activity of the enhancer
changed in the expected direction. For example, when we
moved the Tead single motif in the minimal Rin3 enhancer further
away from the Tfap2c motif (from 20 bp away to 60 bp away),
BPNet predicted lower TEAD4 binding (Figure 3E). This lower
binding mirrored the lower activity measured in the luciferase
assay (Figure 3F). Moving the two motifs closer to each other
increased the luciferase reporter activity of the minimal Dst and
Adcy7 enhancers (Figure S3E).

To confirm that these distance effects are also observed in the
genomic context, we performed CRISPR-Cas9-induced muta-
tions in TSCs using homologous recombination on the endoge-
nous Rin3 enhancer (Figures S3F and S3G). ChIP experiments
on this edited cell line confirmed the reduced TEAD4 binding,
H3K27ac, and Pol Il levels at the Rin3 enhancer (Figure 3G), while
other enhancers remained unchanged (Figure S3H). This dem-
onstrates that changing the distance between motifs through
controlled minimal mutations measurably affects enhancer ac-
tivity markers in an in vivo endogenous context.

Taken together, we have identified genome-wide rules by
which cell-type-specific TF motifs can enhance the binding of
the Hippo signaling effectors. We validated that Tfap2c motifs
enhance TEAD4/YAP1 through soft motif syntax in a distance-
dependent manner, resulting in synergistic enhancer activation.
This could represent a general mechanism for how cell-type-
specific TFs boost the activity of signaling pathways.

The Tead double motif is a canonical element of the
Hippo pathway
So far, we have focused on the genome-wide rules and mecha-
nisms by which cell-type-specific TFs influence Hippo pathway
activity. To push the boundaries of what can be learned with
our approach, we next asked whether we could also discover
novel molecular details of the Hippo pathway effectors them-
selves, which are mechanistically well studied.

Notably, BPNet discovered the strictly spaced Tead double
motif (Figure 1E), which is not considered a canonical regulatory
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Figure 3. Enhancer activation involves DNA-distance-dependent cooperativity

(A) Luciferase assay of a 200 bp Bmp7 enhancer (mm10-chr2:172,760,183-172,760,382) in TSCs shows that the Tead single and Tfap2c motifs function syn-
ergistically, producing reporter activity greater than the sum of each individual motif. Black dots show the three biological replicates per construct.

(B) The BPNet contribution scores of Tfap2c motifs toward YAP1 binding are significantly higher when they are in close distance to a Tead single motif For each
distance interval, the median log ratio of the contribution scores over the baseline scores where Tfap2c motif >150 bp away is shown (*p < 2e—16, Wilcoxon test).
(C) Heatmap of YAP1 binding contribution scores at genomic regions ordered by Tead single-Tfap2c motif distance. The contribution of both motifs decreases
with larger distances. Linear regression gives a —4.34% slope per 10 bp and p < 2.2e—16 (Table S5 and STAR Methods).

(D) By injecting motifs in silico into randomized sequences, the average enhancement of TF binding to the center motif in the presence of a side motif is predicted
by BPNet."® The results show a distance-dependent enhancement of TEAD4 and YAP1 binding in the presence of a Tfap2c motif.

(E) Predicted TEAD4 binding at the Rin3 enhancer where the Tfap2c and Tead single motifs are 20 bp apart (left) and after the distance was increased to 60 bp
between motifs (right). The motif was moved by inserting an identical new motif further away and mutating the most important bases within the original Tead single
motif.

(F) Luciferase assays of the wild-type (WT) and mutated (Mut) 200 bp minimal Rin3 enhancer in TSCs, all in three biological replicates and normalized to the empty
vector control, show a significant decrease (p < 0.05, Student’s t test).

(G) After mutating the endogenous Rin3 enhancer through sequential CRISPR (Mut), TEAD4 ChIP-nexus binding (left), H3K27ac ChIP-seq enrichment (center),
and Pol Il ChlP-nexus occupancy (right) were all reduced compared with WT. The scale for ChIP-nexus is reads per million (RPM), for H3K27ac levels log2(ChIP-
seq/WCE reads), in a 1 kb window. Two biological replicate values (black dots); error bars show standard deviation (SD). The p values were derived by DEseq2
(v.1.34).%°

43,85,86

element of the Hippo pathway, although it has been be identified (Figure 4A). However, when FIMO was used to map

discovered multiple times.”*®"%® The first characterization
occurred on the SV40 enhancer, but its identity remained unclear
since it did not resemble the Tead single motif.>*°° Even after
the Tead double motif had been discovered in Drosophila and
cancer cells,”*®"* it often remained unreported in genomics
studies.**%

To test whether the Tead double motif has simply been over-
looked or whether the BPNet approach is particularly suitable
to learn this motif, we analyzed our data using traditional geno-
mics approaches (Figure 4A). We found that it is easy to miss
the Tead double motif by MEME or HOMER (Figure S4A), but
with prior knowledge of suitable settings, a position weight ma-
trix (PWM) similar to that discovered by BPNet/TF-MoDISco can
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motif instances in the bound genomic regions with this PWM, the
mapped motifs disagreed with the in vivo TEAD4 ChIP-nexus
data. While CWM-mapped Tead double motifs consistently
show strong TEAD4 footprints, confirming their correct mapping,
the PWM-mapped motifs show far fewer footprints (Figure 4B).
This problem was less pronounced with Tead single motifs,
which mapped more accurately with PWM scanning (Fig-
ure S4B). This shows that BPNet outperforms traditional
methods in mapping functional motif instances,'® and that
Tead double motifs are particularly challenging to map.

We next performed in silico experiments to test whether the
Tead double motif itself was learned more accurately by BPNet
or whether the genomic context provided the necessary context
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Figure 4. The Tead double motif is widespread, highly variable, and active
(A) Comparison of the BPNet and traditional approach for de novo motif discovery and mapping the Tead double motif in genome sequences. The BPNet

approach uses TEAD4 contribution scores and CWM motifs, while MEME was

used on the central 101 bp of TEAD4 peaks to derive frequency-based PWMs and

map motifs by match scores. With correct settings, both methods identified the Tead double motif.

(B) However, Tead double motifs mapped by CWM scanning consistently show TEAD4 in vivo ChIP-nexus binding footprints throughout, while motifs mapped by
PWM using FIMO show much fewer footprints; + strand (blue) and — strand (red). Regions were centered on the motif’s left side and sorted by ChIP-nexus signal.
(C) Predicted TEADA4 signal for the top 5,000 Tead double motifs from each category shows that the contribution scores are key for the CWM-mapped motifs’
quality. The frequency-based PWM- or CWM-mapped motifs injected into randomized sequences perform similarly, while contribution-based CWM-mapped
motifs have higher predicted values. The same CWM-mapped motifs predicted in their native genomic context show a wider distribution.

(D) All unique sequence patterns for the Tead single and double motifs, sorted by relative motif affinities (teal, left) and CWM logo on top. The motif frequency
(purple, right) shows that high-affinity Tead single motifs occur most frequently, while Tead double motifs do not (black arrow).

(E) BPNet-predicted TEAD4 binding profile at the Cited2 enhancer when the Tead single motif was replaced with a strong or a weak Tead double motif.

(F) Luciferase assay of the 200 bp minimal Cited2 enhancer (mm10-chr10:17,579,590-17,579,789), normalized over the empty vector control, for the three motifs,

each in three biological replicates.

to make better predictions (Figure 4C). The key to CWM scan-
ning is that it considers BPNet model-derived contribution
scores in each individual genomic region (Figure 4A). These
contribution scores depend on the binding strength of the motif
itself and the genomic context, such as neighboring motifs. To
distinguish which one was key, we in silico injected the PWM-
mapped and CWM-mapped motifs into a randomized sequence
background and predicted TEAD4 binding (Figure 4C, methods).
This revealed that the CWM-mapped motifs themselves had
higher predicted binding than the PWM-mapped motifs, and
that this was due to the contribution scores. Genomic context
modulated the binding predictions, but did not explain the better
performance of CWM scanning (Figures 4C and S4C). This
shows that the CWM-mapped Tead double motifs are more ac-
curate because they incorporate BPNet's learned binding
strength, and that the binding strength of this motif is not well
modeled by a PWM.

The challenging aspect of the Tead double motif is that it is a
long sequence pattern where many bases do not strongly
contribute and are highly variable among the mapped motif se-
quences (Figure 4D). When we analyzed the sequence patterns
of the more regular Tead single motifs, the vast majority are
commonly occurring patterns, with high-affinity motifs being
the most frequent (Figure 4D, left). In contrast, only a tiny fraction
of the mapped Tead double motifs have recurring sequence pat-
terns, and the most frequent patterns are not those with the high-
est predicted affinity (Figure 4D, right). This can explain why a
frequency-based PWM representation does not accurately
reflect the binding strength and why it has been difficult to iden-
tify the Tead double motif on the SV40 enhancer, while the BPNet
model learned this motif (Figure S4D).

Having established the widespread occurrence of the Tead
double motif, we asked how much the Tead double motif pro-
motes enhancer activity compared with a Tead single motif.
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Using our validated putative Cited2 enhancer, we replaced the
high-affinity Tead single motif with either a weak Tead double
motif (mapped by both PWM and CWM scanning), and a strong
Tead double motif (mapped by CWM scanning only, highlighted
in Figure 4C). BPNet predicted that replacement with the strong
Tead double motif caused a large increase in TEAD4 binding,
while the weaker one caused a reduction in binding (Figure 4E).
When assayed in a luciferase assay, the strong Tead double
motif caused an over 8-fold increase in activity compared with
the wild-type Tead single motif. Interestingly, even the weak
Tead double motif showed increased activity (~1.9-fold) over
the Tead single motif despite lower TEAD4 binding (Figure 4F).
This shows that even a weaker Tead double matif is highly active,
explaining why it can be functional in so many different sequence
patterns.

These results suggest that the Tead double motif is an impor-
tant element of the Hippo pathway in TSCs. To test whether this
can be generalized to other TEAD family members and cell types,
we analyzed BPNet models trained on TEAD1-4 ChlIP-seq data
from the ENCODE portal®”®® (https://www.encodeproject.
org/). BPNet discovered the Tead double motif in diverse human
cell types for different TEAD family members (Figure S4E),
showing that the Tead double motif is generally a widespread ca-
nonical motif of the Hippo pathway.

Genome-wide TEAD4 cooperativity through labile
protein-protein interactions

The nature of the Tead double motif, its strong activity, and strict
spacing, suggest that it is bound cooperatively by two TEAD4
molecules. Such cooperativity is also supported by previous
gel shift analyses,®”94°>9%99 pyt it is not known how strong
the two TEAD4 molecules interact with each other. They could
already come as a dimer, as known for JUN-FOS,'%° or they
could only interact on DNA when a corresponding DNA
sequence brings them into contact.?*'°" We, therefore, explored
the mechanism of TEAD4 cooperativity using BPNet and all-
atom MD simulations (Figure 5).

The MD simulations were performed by placing two TEAD4
DNA binding domains (PDB: 5GZB)'%? on the high-affinity func-
tional Tead double motif from the putative Tjp7 enhancer
(Figures 5A, 5B, S5A, and S5B). This complex was highly similar
to one predicted by AlphaFold3'%* (Figure S5M) and remained
stable during the simulations over 500 ns, allowing us to quantify
the protein-DNA and protein-protein interactions over time
(measured as buried surface area AZ) (Figures 5C and S5G,
left). We also confirmed that the results were similar using the
Tead double motif from the putative Amotl2 enhancer
(Figures S5A and S5B, bottom, and S5E) or when using a
different force field (CHARMM27 instead of FF19SB)'“°
(Figure S5F).

Our MD simulations revealed that the intermolecular TEAD4
protein-protein interactions are sensitive to the DNA template,
consistent with BPNet’s predicted changes in binding levels
(Figures S5H and S5N, left). The protein-protein interactions
were strongest in the presence of the correctly spaced Tead
double motif, and weaker when simulating with a 1-bp deletion,
a 1-bp insertion, or mutations in one-half of the DNA sequence
(Figures 5B, 5C, S5C, S5D, and S5G, right). The protein-protein
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contacts occur through amino acid residues within a region that
is important for TEAD4’s cooperative binding to the Tead double
motif®® and is highly conserved between TEAD family members
and across evolution (Figures 5D and 5E), consistent with the
widespread role of the Tead double motif.

At the same time, these protein-protein interactions were sur-
prisingly dynamic and labile (Figure 5C), arguing against TEAD4
forming dimers before binding to DNA. They changed on the
scale of ~100 ns, which is much shorter than the tens of micro-
seconds seen for stable protein-protein complexes.'’® The con-
tacts made by the involved residues also varied in their molecular
details over time. Contacts such as hydrogen bonds (Figure 5D,
inset) formed and then dissociated, with no single interaction
persisting for the entire trajectory (Video S1). This suggests
that the initial DNA-templated protein-protein interactions be-
tween two TEAD4 molecules are labile and dynamic in nature,
although binding of this complex in vivo may be further stabilized
by the Hippo effector partners YAP1 or TAZ.'%”

To analyze TEAD4 binding cooperativity in vivo and test its
dependence on Hippo signaling, we leveraged BPNet (Figures 5F
and 5G). Since BPNet accurately predicts TEAD4 binding on
Tead single and Tead double motifs, we measured the coopera-
tivity on the Tead double motif as the observed increase in bind-
ing over the expected additive binding on each Tead motif con-
tained in the Tead double motif (Figure 5F). This showed
consistently strong cooperativity across the genome, with an
average of ~4-fold higher TEAD4 binding than expected from
an additive model (Figure 5F).

To test whether this cooperativity was dependent on Hippo
signaling, we performed TEAD4 ChIP-nexus in mouse embry-
onic stem cells (ESCs) where YAP1/TAZ is not nuclear,”' and
trained an independent BPNet model on these data (Figure S5I).
In these cells, TEAD4 binding was overall lower than in TSCs,
resulting in much fewer bound instances (Figures 5G, S5J,
and S5K). This is consistent with TEAD4 binding being stabi-
lized at the Tead double motif by partners in TSCs.'%” However,
we observed cooperativity even in ESCs, with a >2-fold in-
crease over the additive signal (Figure 5G). This is consistent
with the MD model, where some degree of TEAD4 cooperativity
on the Tead double motif is observed in the absence of
YAP1/TAZ.

Finally, we investigated whether the labile interactions we
observe for TEAD4-TEAD4 are within range of what has been
observed for other TFs that interact on DNA (Figure 5H). Since
MD simulations are rarely performed, we quantified and
compared the protein-protein buried surface area between
TFs from crystal structures,?* preferably on TFs studied here.
Our high-affinity simulation gave an average buried surface
area of 112 A2 between the two TEAD4 molecules. For compar-
ison, the JUN-FOS dimer is held together through much stron-
ger protein-protein interactions (2,466 /0-\2), consistent with
dimerization before binding DNA.'%° GATA-GATA'*® formed in-
termediate interactions (530 ,&2), suggesting that the complex is
DNA templated but not as labile as the TEAD4-TEAD4 com-
plex. Finally, we found interaction strengths akin to those of
TEAD4-TEAD4 (Figure 5H), most notably those of IRF with
RelA (105 A?), p50 (94 A?), and ATF-2 (180 A?) in the enhanceo-
some model (Figure S5L). This example is particularly relevant
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Figure 5. BPNet and MD simulations reveal insights into TEAD4 cooperative binding at double motifs

(A) Using the known structure of human TEAD4 bound to a single motif, ' we constructed a model of two TEAD4 DNA binding domains simultaneously bound to a
high-affinity Tead double motif.

(B) Graphic showing which interactions were measured to quantify binding strength and which sequences were used as controls. The 1-bp deletion was chosen
because BPNet predicts it to cause lower TEAD4 footprints (right), suggesting that cooperative binding depends on optimal spacing.

(C) Buried surface area distributions from the MD simulations with the high-affinity Tead double motif (GCATTCCCGACATTCCC) shown as solid areas, and the
1-bp deletion (GCATTCCCxACATTCCC) shown as a red line. Lower protein-protein interaction values for the 1-bp deletion and insertion suggest lower co-
operativity at suboptimal spacing (see also Figure S5D). The mean protein-DNA interaction is not a reliable measurement for sequence affinity but the difference
between the two sides is a sequence-specific feature that we experimentally validated (Figure S5N, right).

(D) TEAD4 residues involved in interprotein interactions (defined by <4 A in >20% of simulation frames) are shown as space-filling spheres on the left TEAD4 and
as ball-and-stick atoms on the right TEAD4. In a representative frame, R64 and E48 form a hydrogen bond (green dashed line, inset), but it forms/dissociates
throughout the trajectory. A simulation video shows the entire protein-protein interaction dynamics (Video S1).

(E) Interactions residues are conserved across Drosophila Scalloped, mouse TEAD4, and human TEAD4 based on Clustal Omega multiple sequence alignment
(UniProt IDs: P30052, Q62296, Q15561).

(F) In silico analysis of the TEAD4 cooperativity in mouse TSCs on all mapped Tead double motif sequences, injected into random sequences either as a whole
(cooperative) or each half separately and then added (additive). The predicted signal was summed in a 50 bp window and averaged across all random sequences.
Motifs were ordered by the predicted TEAD4 signal on the whole motif.

(G) Same as in (F), but mapped Tead double motifs and predictions were in mouse ESCs.

(H) Quantification of protein-protein buried surface area (Az) from structures of TFs that form dimers in solution (PDB: 1JNM [AP-1]; 4Y5W [STAT6]; 4H10
[BMAL:CLOCK]), TFs that have stable DNA-mediated interactions (PDB: 3DFV [GATA-GATA]; 104X [OCT1-SOX2]; 8CEF [ERR]), TFs with weak interactions (our
simulations of TEAD4, PDB: 5GZB; RelA-IRF-7D and IRF-3A-ATF-2'%%), and TFs that cooperate with soft syntax and may not directly interact; examples include
TFAP2C and TEAD4, and OCT4-SOX2 and NANOG. '® Highlighted in red are TFs for which motifs were identified here with BPNet.

as the TFs have been reported to cooperate with a measurable
effect on transcription.?®%2'%° These results point toward labile
interactions being a plausible mechanism for DNA-templated
cooperativity.

Taken together, our results suggest that two TEAD4 molecules
cooperate with each other on the Tead double motif through
transient and labile interactions (Figure 5H). We propose that
labile interactions make this type of cooperativity highly depen-
dent on the sequence template and allow additional stabilization
by partners to further fine-tune the readout.

A redesigned enhancer shows that the Tead double
motif increases gene activation in mouse embryos
Having shown that the Tead double motif mediates TEAD4 coop-
erative binding genome-wide, we wanted to confirm that it medi-
ates the response to the Hippo pathway in vivo. We added the
Tead double motif to an endogenous enhancer in TSCs and re-
integrated these cells into mouse embryos. We selected the pu-
tative Ezr enhancer because it contains a Tead single motif, has
all the hallmarks of being an active TSC enhancer (Figure S2F),
and its putative target gene Ezr encodes an actin-associated
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Figure 6. CRISPR-Cas9 enhancer design validated by BPNet increases target gene activity in mouse embryos

(A) At the putative Ezr enhancer in mouse TSCs (mm10-chr17:6,827,705-6,827,905), the Tead single motif in the wild-type (WT) sequence was mutated (Mut) into
a strong Tead double motif through CRISPR-Cas9-mediated homologous recombination. BPNet predicts increased TEAD4 binding (left); + strand on top, —
strand on the same scale below, lime box: motif width. ChlP-nexus experiments confirm this change (right); scale is reads per million (RPM).

(B) RNA-seq data in transcripts per million (TPM) in WT and Mut cells. Differential expression p values were derived using edgeR on three biological replicates.
(C) HCR-FISH was performed on aggregated mouse blastocyst embryos with incorporated WT or Mut (edited Ezr"P) cells, using probes for Cdx2, Ezr, and td-

Tomato.

(D) Quantification of average Ezr counts (average Cdx2 counts shown in Figure S5E). Ezr transcripts were significantly increased for edited cells but not for WT
cells among Cdx2+ TE lineage cells (Student’s t test p < 0.05). Error bars show standard error of the mean (SEM).

protein that is highly expressed in TSCs.>*""%""" We hypothe-
sized that replacing the Tead single motif with a high-affinity
Tead double motif would increase the enhancer’s response to
Hippo signaling in vivo.

While it is typically easy to destroy the activity of an endoge-
nous enhancer by mutating relevant TF motifs,* it is more chal-
lenging to engineer mutations that increase the activity since
sequence changes can have unexpected side effects.**>' How-
ever, deep learning models are ideal for exploring and evaluating
possible mutations, as shown in Drosophila.'®"'? We, therefore,
replaced the Tead single motif with a Tead double motif in such a
way that BPNet predicts an increase in TEAD4 binding (Fig-
ure 6A, left).

We then used CRISPR-Cas9-induced homologous recombi-
nation to edit the endogenous enhancer in our TSCs (Figure S6A).
We performed TEAD4 ChIP-nexus experiments on the edited
cells and found that the TEAD4 binding footprint indeed matched
the one predicted by BPNet (Figures 6A, right, and S6B). We also
tested the modified enhancer sequence in the luciferase assay
and found it to increase enhancer activity (Figure S6C). The in-
crease was moderate (~1.5-fold), likely because the wild-type
enhancer activity was already high to begin with. To test whether
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this change affects the expression of Ezr, we performed RNA-
seq on the edited cells with the Tead double motif and the
wild-type cells with the Tead single motif. This revealed a moder-
ate, statistically significant increase in Ezr transcript levels in the
edited cells (Figure 6B).

We next tested whether this edit increases Ezr expression in
mouse embryos in a cell-type-specific way. We marked the edi-
ted TSCs (and wild-type TSCs as control) with td-Tomato, aggre-
gated these cells with early mouse embryos at the 4-8 cell stage,
and analyzed the embryos when they reached the blastocyst
stage, where the outer TE cells are clearly distinguishable from
the inner cell mass (ICM) by their expression of Cdx2. We per-
formed HCR-FISH to precisely quantify the expression of Ezr
and Cdx2 in these embryos (Figures 6C and S6D-S6F).

Ezr transcripts were specifically increased in edited cells but
not wild-type cells, and only when they became TE cells with nu-
clear YAP1 (Figure 6C, right). Not all added TSCs maintained
their TE identity but occasionally lost Cdx2 expression and ac-
quired ICM identity (Figure S6E), consistent with cell fate plas-
ticity at this stage.** Notably, when the edited cells lost TE iden-
tity, Ezr transcripts were no longer increased. These findings
show that the increased activity of the Tead double motif is
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specific to the cell type with nuclear YAP1. They also demon-
strate that, with the help of BPNet’s predictive framework, en-
hancers can be manipulated to respond more strongly to a
cell-type-specific signaling pathway in vivo.

DISCUSSION

Here, we show as a proof of principle that the cell-type specificity
of the Hippo signaling pathway in TSCs is encoded in the cis-reg-
ulatory sequences and that the sequence rules reflect the mech-
anisms by which these sequences are read out. Canonical effec-
tors such as TEAD4 and YAP1 of the Hippo pathway are well
studied, but how these effectors mediate different transcriptional
responses in different cell types has been a challenging problem,
often attributed to the combinatorial complexity of the signaling
components or effects of chromatin. The fact that we can train a
deep learning model to accurately predict the binding of the
signaling effectors in TSCs from sequence alone, and that the
binding is predictive of enhancer activation, shows that the cell-
type-specific response to Hippo signaling is sequence encoded.
Moreover, we found that the learned sequence rules are precise
enough to reveal mechanistic insights into how signaling pathway
effectors function and interact with cell-type-specific partner TFs.

The power of this approach comes from training a highly pre-
dictive base-resolution sequence model. Since the model can
accurately predict test sequences it has never seen during
training, it has learned general TF binding rules that apply
genome-wide for the cell type it was trained on. These rules
include the motif’s strength (as shown here for the Tead double
motif) and incorporate input from neighboring motifs (e.g., the
contribution of Tfap2c toward YAP1 binding). As a result, the
tens of thousands of motifs that we mapped inside active en-
hancers are more accurate than motifs mapped by traditional
methods. For example, a frequency-based PWM could not
accurately map the long and variable Tead double motif in the
genome, explaining why studies in the past did not identify this
motif as a widespread canonical element of the Hippo pathway.
Furthermore, we used the predictive accuracy of the model for
designing follow-up experiments, e.g., performing minimal mu-
tations to achieve a certain outcome.

A key focus of this study was, however, to interpret the trained
model to derive mechanistic insights. We found that the model
learned precise rules by which motifs combinatorially predict
YAP1 binding, including syntax rules that determine how the dis-
tances between motifs affect the binding cooperativity. These
syntax rules should depend on the molecular mechanisms by
which the corresponding TFs interact. Since we re-discovered
expected motifs and their interactions, and validated novel find-
ings, we conclude that the sequence rules indeed mirror molec-
ular mechanisms downstream of the Hippo signaling pathway.

The motif syntax rules suggested that cell-type-specific
TFAP2C boosts YAP1 binding and enhancer activation at motif
distances of up to ~150 bp, with stronger effects at closer dis-
tances. This soft syntax, which we experimentally validated, is un-
likely to involve specific protein-protein interactions and instead
points to a nucleosome-mediated mechanism,'>20:26:118-117
Such a mechanism, while molecularly unclear, could explain
how signaling TFs can receive input from a wide variety of TFs
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in different cell types without having evolved specific protein-pro-
tein interactions. Nevertheless, we found that some cell-type-spe-
cific TFs had a stronger contribution to YAP1 binding than others,
suggesting that specific properties make them better partner TFs.
TFAP2C is likely a strong partner because it is highly expressed,
can pioneer chromatin,''®'"® and interacts with co-activators,'*°
which could help YAP1 form condensates.”*’? An important chal-
lenge in the future will be to measure how TFs interact with each
other in different cell types and which properties drive these
interactions.

A different type of syntax was found for the Tead double matif,
where two strictly spaced Tead motifs mediate cooperative
TEAD4 binding. Using MD simulations, we found that this motif
allows two TEAD4 molecules to directly interact with each other,
but the protein-protein interactions were surprisingly labile, tran-
sient, and dependent on the DNA sequence. Such weak interac-
tions between TFs have been observed in the enhanceosome
crystal structure, but their dynamic nature and significance
were not known at the time. We propose that such transient in-
teractions are strong enough to stabilize the complex but weak
enough that they depend on matching DNA sequences and
can be further stabilized through signaling pathway activities.

In summary, our sequence-driven interpretable deep learning
approach reveals motif dependencies and syntax rules that
correspond to distinct molecular mechanisms and suggest novel
hypotheses that can be further studied experimentally. For
example, we also discovered a palindromic Gata double motif.
Since previous studies have shown that GATA zinc fingers can
bind DNA cooperatively,'°®'?" it should be possible to identify
the structural basis for GATAS3 binding to this specific motif.
Importantly, our approach identifies TF cooperativities that are
in many cases cell-type specific and thus open the door to sys-
tematically study how signaling pathways target different en-
hancers in different cell types.

Limitations of the study

A limitation of our approach is that it depends on high-quality
binding data in the cell type of interest. While BPNet can model
lower-resolution ChIP-seq data,'®'? the cell-type specificity of
signaling effectors makes obtaining comprehensive data across
cell types beyond ENCODE challenging. Model training and
interpretation also have limitations. For example, we noticed
that YAP1 binding correlates better with enhancer activity
markers than TEAD4 binding, yet the model interrogation sug-
gested that YAP1 binding is mostly boosted through increased
binding of TEADA4. Finally, the precision of MD simulations can
give a deceptive sense of accuracy if the simulation does not
adequately sample conformation space. Since our simulated
system is large, we cannot capture a complete equilibrium
ensemble, making MD results a snapshot of the possible
behavior of the TEAD4-DNA complex.
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Materials availability
CRISPR-Cas9 cell lines and complete hydrated MD trajectories generated in
this study are available upon request.

Data and code availability

o The raw and processed data for ChIP-nexus, ChlP-seq, ATAC-seq, TT-
seq, and RNA-seq experiments have been deposited in GEO under se-
ries accession number GSE252463. The genomic datasets used in the
paper can be viewed on the UCSC Genome Browser: Link

® The ChIP-nexus protocol description can be found at https://research.
stowers.org/zeitlingerlab/protocols.html. The trained BPNet model is
available at Zenodo https://zenodo.org/records/14894986. Original
data, including MD simulation trajectories and microscopy images,
can be accessed from the Stowers Original Data Repository at http://
www.stowers.org/research/publications/libpb-2440. All code used to
process and analyze the data in this paper can be accessed at
https://github.com/zeitlingerlab/Dalal_hippo_signaling_2024.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Mouse monoclonal anti-TEAD4 Abcam ab58310
Goat polyclonal anti-TFAP2C R&Dsystems AF5059
Rabbit polyclonal anti-CDX2 Bethyl Laboratories A300-692A
Rabbit monoclonal anti-GATA3 Cell Signaling 5852T
Rabbit polyclonal anti-YAP1 Cell Signaling 14074S
Rabbit monoclonal anti-Pol Il Cell Signaling D8L4Y
Rabbit polyclonal anti-H3K27ac Active Motif 39135
Mouse monoclonal anti-CDX2 for immunofluorescence BioGenex MU392A-5UC
Rabbit monoclonal anti-Nanog for immunofluorescence Cell Signaling 8822
Anti-rabbit IgG Alexa Fluor 488 secondary antibody Biotium 20015
Anti-rabbit IgG Alexa Fluor 647 secondary antibody Biotium 20047
Chemicals, peptides, and recombinant proteins

37% formaldehyde solution VWR 50-00-0
Dynabeads Protein A ThermoFisher 10008D
phi29 DNA polymerase New England Biolabs M0269S
Lambda exonuclease New England Biolabs M0262S

Q5 High-Fidelity 2x Master Mix New England Biolabs M0492S
dNTP solution mix New England Biolabs N0447S
RNase A ThermoFisher EN0531
Phenol:chloroform:isoamyl alcohol (25:24:1) (v/v/v) VWR 136112-00-0
Proteinase K ThermoFisher 25530049
DAPI BioLegend 422801
crRNA and ssODN sequences IDT Table S2
Alt-R HiFi Cas9 Nuclease V3 protein IDT 1081059 and 1075928
and tracerBRNA, ATTO-550

rLV.EF1.tdTomato-9 Takara 0036VCT
Critical commercial assays

End Repair Module New England Biolabs E6050S
dA-Tailing Module New England Biolabs E6053S
Quick Ligation Kit New England Biolabs M2200S
Monarch DNA Gel Extraction Kit New England Biolabs T1020
Monarch PCR & DNA Cleanup Kit New England Biolabs T1030
Hybridization Chain Reaction (HCR) v3.0 Molecular Instruments N/A

Infusion cloning Takara 638947
Dual-Glo luciferase assay system Promega N1521
TruSeq Stranded Total RNA Library Prep lllumina RS-122-2303
Kit with Ribo-Zero Gold Set

TruSeq poly-A Stranded mRNA Library Prep Kit lllumina 20020595
NEBNext Ultra Il DNA library prep kit NEB E7645
Deposited data

Raw and analyzed NGS and PBM data This paper GEO: GSE252463
Trained deep learning model This paper https://zenodo.org/records/14894986
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw images and MD trajectories This paper https://collaboration.stowers.org/d1e17b38-

9a3d-4900-a623-ac32836b32fc/
Experimental models: Organisms/strains
Mouse Trophoblast Stem Cells (TSCs) Singh et al.*>® https://pubmed.ncbi.nlm.nih.gov/33458704/

Mouse Embryonic Stem Cells (ESCs)

Avsec et al."®

https://www.nature.com/articles/s41588-
021-00782-6#Sec10

First CRISPR TSC line: CRISPR-Cas9 at This paper N/A

Tead motif within locus chr17:6,827,

802-6,827,811 in mouse Trophoblast

Stem Cells (TSC)

Second CRISPR TSC line: CRISPR-Cas9 This paper N/A

at Tead motif within locus chr12:102,262,

024-102,262,033 in mouse Trophoblast

Stem Cells (TSC)

Oligonucleotides

Oligonucleotides for ChIP-nexus, see Table S2 IDT https://research.stowers.org/
zeitlingerlab/protocols.html

lllumina Index primer 1: 5'-CAAGCAGAAGA IDT https://support-docs.illumina.com/SHARE/

CGGCATACGAGATIi7]JGTCTCGTGGGCTCGG-3 AdapterSequences/Content/SHARE/
AdapterSeq/Nextera/SequencesNextera_
lllumina.htm

lllumina Index primer 2: 5'-AATGATACGGC IDT https://support-docs.illumina.com/SHARE/

GACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3’ AdapterSequences/Content/SHARE/
AdapterSeq/Nextera/SequencesNextera_
lllumina.htm

lllumina Transposase adapter read 1 (Nextera A): IDT https://support-docs.illumina.com/SHARE/

5- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3' AdapterSequences/Content/SHARE/
AdapterSeg/Nextera/SequencesNextera_
lllumina.htm

lllumina Transposase adapter read 2 (Nextera B): IDT https://support-docs.illumina.com/SHARE/

5'- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3 AdapterSequences/Content/SHARE/
AdapterSeq/Nextera/SequencesNextera_
lllumina.htm

Mosaic end primer:/5Phos/CTGTCTCTTATACA/3ddC/ IDT Tn5mC1.1-A1block

Recombinant DNA

PETM11-Sumo3-Tn5 plasmid
His6-tagged SenP2 protease plasmid

Hennig et al.'*

Hennig et al.'*®

E54K,L372P
N/A

Software and algorithms

FlJI
Cutadapt v.2.5
Bowtie (v.1.1.2) and Bowtie2 (v.2.4.2)

MACS2 v.2.2.6

Irreproducible Discovery Rate framework v.2.0.3
STARVv.2.7.3

deepTools2 v.3.1.3

BPNet software v.0.0.23

Keras v.2.2.4

TensorFlow1 backend v.1.7

Adam optimizer

DeepLIFT v.0.6.9.0

TF-MoDISco v.0.4.2.2

Schindelin et al.’**

Martin 2011'2°

Langmead and Salzberg'?®

Zhang et al."®’
Lietal'®®

Dobin et al.'®®

Ramirez et al."*®
Avsec et al.’®
Chollet F'*'

Abadi et al.'*

Kingma and Ba
|.63

133

Shrikumar et al
Shrikumar et al.®*

https://fiji.sc/
https://cutadapt.readthedocs.io/en/v2.5/

https://bowtie-bio.sourceforge.net/
bowtie2/manual.shtml

https://github.com/macs3-project/ MACS
https://github.com/nboley/idr
https://code.google.com/archive/p/rna-star/
https://deeptools.readthedocs.io/en/latest/
https://github.com/kundajelab/bpnet/
https://pypi.org/project/keras/
https://www.tensorflow.org/install/pip

N/A
https://github.com/kundajelab/DeepExplain
https://github.com/kundajelab/tfmodisco

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 v.1.34.0 Love et al.®® https://bioconductor.org/packages/release/
bioc/html/DESeqg2.html

Rv.4.1.1 and v.4.2.3 R core team https://www.r-project.org/

Rstudio RStudio https://rstudio.com

ggplot2 v.3.5.1 Wickham'** https://ggplot2.tidyverse.org/

VMD 1.9.3 Humphrey et al."®® http://www.ks.uiuc.edu/Research/vmd/

AmberTools20 and CHARMM27

MEME v.5.3 and v.5.5.3

Case et al."*° and
MacKerell et al.’*

Bailey et al.”®”

https://ambermd.org/AmberTools.php
https://mackerell.umaryland.edu/
charmm_ff.shtml#gromacs

https://meme-suite.org/meme/tools/meme

FIMO v.5.5.3 Grant et al.’®® https://meme-suite.org/meme/tools/fimo
AlphaFold3 Abramson et al.'%? https://alphafoldserver.com/

Napari v0.4.0 Ahlers et al.'? https://doi.org/10.5281/zen0do.3555620
Cellpose deep learning Stringer et al.'*° www.cellpose.org

Other

All code and analyses that contributed to this work

Bioruptor Pico sonication device

Confocal scanning microscope
Spinning disk microscope

This paper

Diagenode

Zeiss
Nikon

https://github.com/zeitlingerlab/
Dalal_hippo_signaling_2024

https://www.diagenode.com/en/p/
bioruptor-pico-sonication-device
800

Eclipse Ti2

Quantification and Statistical Analysis

Linear regression model was implemented in R core team
R v.4.1.1 using the Im function.From the fitted

model,key parameters (slope, intercept, p-value)

were extracted. (Table S5)

https://www.r-project.org/

METHOD DETAILS

Mouse stem cell culture

Mouse trophoblast stem cells (TSCs) were a gift from Vijay Pratap Singh and were maintained in a feeder-free culture as described.*®
Briefly, feeder conditioned medium (Feeder-CM) was prepared by culturing y-irradiated MEFs (mouse embryonic fibroblasts) in TS
medium (RPMI 1640 medium, FBS 20%, 50 ng/mL of Penicillin and streptomycin (100 x), 1 mM of Sodium pyruvate (100 mM), 0.1 mM
of B-Mercaptoethanol (20 mM), 2 mM GlutaMAX (200 mM) for 72 h and then filtered with a 0.45 um filter. 70% Feeder-CM plus 30%
TS medium (70cond) supplemented with growth factor FGF4 (R&D System) and heparin (Sigma) (70cond +1.5x F4H Medium) was
used to maintain TSCs in feeder-free conditions. Mouse embryonic stem cells (ESCs) were cultured and maintained as previously
described.'®

ChIP-nexus, PAtCh-Cap, and ChlP-seq experiments

For each ChIP-nexus experiment, 10° TSCs were used. Cells were washed with PBS and cross-linked with 1% formaldehyde (Fisher
Scientific) in PBS for 10 min at RT. The reaction was quenched with 125 mM glycine. Fixed cells were washed twice with cold PBS
and resuspended in cold lysis buffer (15 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.5% N-
lauroylsarcosine, 0.1% sodium deoxycholate and 0.1% SDS), incubated for 10 min on ice and sonicated with a Bioruptor Pico (Dia-
genode) for five cycles of 30 s on and 30 s off. The ChlP-nexus procedure and data processing were performed as previously
described,*® except that the ChlP-nexus adapter mix contained four fixed barcodes (ACTG, CTGA, GACT, and TGAC), and PCR li-
brary amplification was performed directly after circularization of the purified DNA fragments (without the addition of the oligo and
BamHI digestion). PAtCh-Cap was performed as previously described'*" with 10% of sheared chromatin from 10-8 TSCs. ChlIP-
seq experiments, including a whole cell extract (WCE) control, were performed as described'*? with 10e® TSCs per ChIP. For
each ChlIP, 5-10 ug of antibody was coupled to 50-100 pL of Protein A or Protein G Dynabeads (Invitrogen). The following antibodies
were used: anti-TFAP2C (R & D systems, no. AF5059), anti-TEAD4 (Abcam, no. ab58310), anti-CDX2 (Bethyl Laboratories, no. A300-
692A), anti-GATAS (Cell Signaling, no. 5852T), anti-YAP1 (Cell Signaling, no. 14074S), anti-Pol Il (Cell Signaling, no. D8L4Y), anti-
H3K27ac (ChIP-seq) (Active motif, no. 39135). For all experiments, at least two biological replicates were prepared-that is, the
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experiments were performed on different days, starting with cells from a different passage number. Single-end sequencing was per-
formed on an lllumina NextSeq 500 instrument (75 cycles). The full ChIP-nexus protocol can be found on the Zeitlinger lab website at
https://research.stowers.org/zeitlingerlab/protocols.html.

Luciferase assays

Selected genomic regions of range 175-200 bp were synthesized using GeneArt Strings DNA fragments along with restriction
enzyme sites for with Kpn1 (NEB, R0142) and Xhol (NEB, R0146) to clone in pNL3.2 vector. pNL3.2 vectors (Promega) were digested
and cloned using an Infusion master mix (Takara) upstream of the luciferase gene. Stellar competent cells (Takara) were used for
transformation and downstream miniprep (Qiagen), following the manufacturer’s protocol. The cloned sequences were confirmed
using the Sanger sequencing method. 2.5-° TSCs were used to transfect a total of 500 ng DNA with lipofectamine2000 in a ratio
of 1:2 (DNA to lipofectamine2000), following the manufacturer’s protocol. Cells were co-transfected with 1:100 ratio of control
(pPGL4.54[luc2/TK]) and reporter construct (pNL3.2[NlucP/minP]). Cells were transfected in suspension for 15-20 min and resus-
pended with media to grow in each well of the 24-well plate.

Luciferase assays were performed using a Dual-Glo luciferase assay system (Promega). After 24 h, cells were harvested, and the
NanoDLR assay protocol was followed per the manufacturer’s instructions to take luminescence measurements with SpectraMax
iD3 Plate Reader. Reporter luminescence signals were normalized according to their corresponding control luminescence signals,
resulting in relative luciferase activity. Replicate luciferase assay experiments were performed independently three times (Table S3).

TT-seq experiments

TT-seq experiments were performed in three biological replicates on TSCs across three biological replicates, as described in'**
https://www.protocols.io/view/transient-transcriptome-sequencing-experimental-pr-3byl42y22vo5/v1. Libraries were prepared us-
ing TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold Set to degrade rRNA. Approximately 10° cells were seeded in a
100 cm dish (~80% confluency) and incubated with 500 uM of 4sU (Sigma) at 37°C, 5% CO, for 15 min. The cells were then collected
by adding 4.5 mL of TRIzol lysis reagent (Life Technologies Corp), incubated for 5 min on ice, flash-frozen, and stored at —80°C. In the
biotinylation of the 4sU labeled RNA step, acid-phenol-chloroform (ThermoFisher) was used instead of chloroform.

ATAC-seq experiments

For each ATAC-seq experiment, 1-° or 2° TSCs were harvested, washed with PBS, and resuspended in ATAC Resuspension Buffer
(RSB, 10 mM Tris-HCI pH 8.0, 10 mM NaCl, 3mM MgCly) with 0.1% IGEPAL CA-630. Tn5 transposition was performed as previously
described.**** Briefly, the cells were incubated for 3 min on ice in ATAC RSB supplemented with 0.1% IGEPAL CA-630, 0.1%
Tween 20, and 0.01% Digitonin (Promega, G9441). The reaction was quenched with ATAC RSB with 0.1% Tween 20 and centrifu-
gation. Tagmentation took place at 37°C and 1000 rpm for 30 min in a 50 puL reaction volume containing 10 pL of 5x Tagmentation
Buffer (50 mM Tris-HCI pH 7.5, 25 mM MgCl,, 50% DMF), 0.5 puL. 10% Tween 20, 0.5 pL 1% Digitonin, 1-2 pM assembled transpo-
some and water. Tn5 transposase was purified in-house as previously described.'*® Tn5 was loaded with previously reported oligo-
nucleotides TNSME-A/Tn5mC1.1-A1block and Tn5ME-B/Tn5mC1.1-A1block'?*"“® by mixing equal amounts of purified Tn5 protein
and annealed oligonucleotides for 30 min at RT. After tagmentation, the DNA fragments were purified using the Monarch PCR & DNA
Cleanup Kit (NEB). Libraries were constructed using lllumina Nextera Dual Indexing, and gPCR was used to prevent over-amplifica-
tion as described.'® At least three biological replicates were generated, and paired-end sequencing was performed on an lllumina
NextSeq 500 instrument (2 x 75 bp).

RNA-seq experiments

TSCs wild-type and CRISPR-Cas9 edited cells were grown separately in wells of a 6-well plate and harvested at 80% confluency (~2°
cells) using 500 pL of TRIzol reagent (Life Technologies Corp). The lysate was incubated for 5 min on ice, flash-frozen, and stored at
—80°C. For RNA extraction, the lysate was quickly thawed at 65°C, cooled on ice for 5 min, and vortexed. Then, 100 uL of chloroform
was added per 0.5 mL of TRIzol lysis reagent, shaken vigorously for 15 s, and incubated for 3 min. The sample was centrifuged at 4°C
and 7000 x g for 25 min, and the upper colorless aqueous phase was transferred to a new tube. 250 pL of isopropanol was then
added, incubated for 10 min at 4°C, and centrifuged at 4°C and 12,000 x g for 10 min. The total RNA precipitate formed a white
gel-like pellet at the bottom of the tube, which was washed with 75% ethanol, air-dried for 5-10 min, and resuspended in 20 pL
of RNase-free water. DNase treatment was performed using the TURBO DNase kit per the manufacturer’s instructions: adding
1 uL of TURBO DNase and 2 L of DNase buffer to the dissolved RNA and incubating at 37°C for 30 min. To inactivate TURBO DNase,
the RNA samples were extracted with phenol/chloroform (Sigma). The sample was centrifuged at 4°C and 7000 x g for 25 min, and the
upper colorless aqueous phase was transferred to a new tube. 250 pL of isopropanol was added, incubated for 10 min at 4°C, and
centrifuged at 4°C and 12,000 x g for 10 min. The total RNA precipitate formed a white gel-like pellet at the bottom of the tube, which
was washed with 75% ethanol, air-dried for 5-10 min, and resuspended in 20 uL of RNase-free water. The samples were incubated in
a water bath or heat block set at 55°C-60°C for 10-15 min. The RNA concentration was determined using a NanoDrop spectropho-
tometer, and the RNA integrity was checked on a 2100 Bioanalyzer using an Agilent RNA 6000 Nano Kit. mRNA-stranded libraries
were prepared using a TruSeq poly-A Stranded mRNA Library Prep Kit and sequenced on an lllumina NextSeq 2000 P2 platform with
2 x 100 bp single-end reads. Three biological replicates were performed for wild-type and CRISPR-Cas9 edited cells.
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CRISPR-Cas9 experiments

In the first CRISPR TSC line, the Tead double motif on chr17:6,827,802-6,827,811 (mm10) was mutated from ACATTCCAGA (wild-
type) to GCATTCCAGGAATTCCA (mutant). In a second CRISPR TSC line, the Tead single motif (CACATTCCTA) on
chr12:102,262,024-102,262,033 (mm10) was first inserted at 60 bp downstream of the TFAP2C motif (GGGCCCCAGGGCC) and
then in a second round of CRISPR-Cas9 editing Tead single motif was mutated from CACATTCCTA (wild-type) to CACCGTCCTA
(mutant) at its original position. crRNA target sites were designed using the IDT target predictor tool by evaluating the predicted
on-target efficiency score and off-target potential. Alt-R CRISPR-Cas9 crRNA was designed to contain ~40 bases of homology
from the targeted cut site (QRNA and ssODN sequences are shown in Table S2. Equimolar amounts (stock of 100 um) of Alt-R crRNA
and tracrRNA-ATTO550 were mixed to form gRNA at a final concentration of 50 uM. The mixture was heated at 95°C for 5 min and
cooled at RT. The single-stranded donor oligonucleotides (ssODN) were designed to contain ~40 bases of homology from the tar-
geted cut site (crBNA and ssODN sequences were designed using the IDT software tool). A ribonucleoprotein (RNP) complex was
formed by combining 150 pmol of gRNA (crRNA+tracrRNA) and 125 pmol of Cas9 HiFi v3 protein (IDT) with hybridization for 20 min at
RT. The RNP was combined with 100 pmol of ssODN donor and 100 pmol of electroporation enhancer v2 and delivered to 1.5e° cells
by Neon electroporation (1,400 V, 10 m, 3 pulses; Neon Transfection System, MPK5000, Life Technologies). Immediately after elec-
troporation, cells were cultured in 0.5 uM Alt-R HDR enhancer V2 of 0.69 mM. After 24 h, cells were washed with PBS before FACS
sorting on S6 FACSymphony. Single cells were directly sorted into 96-well plates. Cells were screened for the expected mutations
through paired-end sequencing on an lllumina MiSeq instrument (250 cycles). On-target indel frequency and expected mutations
were analyzed using CRIS.py."*” Clones with the intended homozygous mutation and sequence alignments >90% were chosen
for further experiments, except for the 2nd CRISPR line, where we found one Indel and SNP within 500 bp of the original Tead single
motif position, but these changes were predicted to be neutral by BPNet.

Mice strains and superovulation

C57BL/6J (B6) strain of mice were used from the Stowers Institute for Medical Research (SIMR) core production colony. Three to
four-week-old females were superovulated using 51U of PMSG (Genway Biotech), followed by 51U HCG (Sigma Aldrich) 46-48 h later.
Following HCG, females were paired with B6 males and checked for a copulatory plug the next morning, indicating successful mat-
ing. Fertilized embryos were collected from the plugged females at 1.5 dpc (2-cell stage) by flushing M2 (Millipore) through the infun-
dibulum and out the uterine horn using a blunt needle. Embryos were then incubated overnight at 37°C under 5% CO, in humidified
air in 4-well culture dishes containing KSOM media (Millipore). Experiments were approved by the SIMR IACUC and were performed
following the committees’ guiding principles.

Lentivirus transduction of fluorescent td-tomato in TSCs

Two days (48 h) before the transduction of wild-type or CRISPR-Cas9 edited (putative Ezr region edits) TSCs, cells were seeded at 1 X
10° cells per well in triplicate with 3 mL of media per well of 6-well plate. On the day of transduction, cells were small-sized colonies of
about 30-40% confluence; the old media were removed and washed once with PBS and replaced with 2 mL of media. The cells were
infected with prepackaged lentiviral particles (constitutive reporter vector expressing tdTomato fluorescent protein gene driven by
EF1a promoter (Takara) at MOI of 20 (Stock: 3.5-'% TU/ml) along with polybrene (4ug/ml) (Sigma) for 24 h before being replaced
with a fresh medium. Four days after transduction, the td-Tomato-positive cells were selected using puromycin antibiotic selection
(1 pg/ml) (InvivoGen) and were kept under selection until the positive colonies reached 60-80% confluence. Once cells reached 80%
confluence, the positive cells were FACS sorted on S6 FACSymphony, expanded, and used for embryo aggregation experiments.

Aggregation assays to obtain chimeric embryos

To prepare the aggregation plates, six indentations on the bottom of the 35 x 10 mm plates were made using an aggregation needle
(BLS) sterilized with 70% alcohol and added a drop of KSOM. All drops of KSOM were covered with mineral oil (Sigma). On the morn-
ing of the aggregation, the embryos (8-16 cell stage) were washed through M2 and then placed in drops of Tyrode’s solution (Sigma).
After about 30 s, the zona pellucida began to dissolve. Once the zona was dissolved, the embryos were picked up and rinsed through
a drop of M2 to neutralize the Tyrode’s solution, then placed in a drop of KSOM. Embryos were moved from this dish to the aggregate
plates, placing an embryo into each indentation. Clumps of td-Tomato transduced TSCs were then picked up with a mouth pipette
and moved onto each embryo in the aggregate plate. Once settled and in contact with the embryo, the aggregation plates were
cultured in an incubator at 37°C under 5% CO, in humidified air for 46-48 h until the embryos reached the blastocyst stage. Chimeric
blastocysts were fixed with 4% paraformaldehyde (ThermoFisher) for 20 min and washed three times with PBS before mounting them
on a glass bottom plate (Cellvis) coated with poly-L-lysine (Sigma). Embryos were imaged with a Zeiss LSM800, an upright confocal
laser scanning microscope.

Immunofluorescence stainings of chimeric embryos

A few fixed chimeric blastocysts were used for immunofluorescence stainings. The embryos were washed three times with PBS-T
(PBS with 0.1% Triton X-100) and incubated in PBS-T for 1 h or longer at 4°C. Embryos were then washed two times with PBS for
10 min each and incubated with 300 pL of superblock solution (ThermoFisher) for 90 min at RT, before adding the primary antibodies:
CDX2 (BioGenex-MU392A-5UC) and Nanog (Cell Signaling, 8822S) with 10 png/mL of DAPI from BioLegend:422801. The CDX2
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antibody came with a signal enhancing reagent, which was used to replace 75% of the superblock solution while incubating with the
primary antibody. The embryos were incubated overnight at 4°C, covered from light. The next day, the samples were washed for
10 min each three times with PBST (0.1% Triton X-100) at RT and once with PBS at RT. Secondary antibodies were added (bio-
tium:20015,20047) in special PBS (ThermoFisher) at a 1:300 dilution with DAPI 2 uL in 1 mL of 10 ung/mL (BioLegend) and kept on
light rotation for 2 h at RT. Samples were then washed three times with PBS for 10 min. Samples were imaged immediately or
kept for up to a week at 4°C before imaging. Imaging was performed with an upright confocal laser scanning microscope (Zeiss
LSM800) with 40x magnification. Maximum intensity Z projections and adjustments to the brightness and contrast were performed
in ImageJ/FIJ1."*® Samples larger than the field of view were taken as tiled images and stitched with the Grid/Collection Stitching
plugin in Imaged.

HCR-FISH on chimeric embryos

Embryos were fixed in 4% paraformaldehyde for 20 min and washed three times in PBS +0.2% Triton X- for 10 min each. RNA FISH
experiments were performed using HCR v3.0 (Molecular Instrument Inc.). The RNA sequences that were used to design probes are
listed along with the chosen amplifiers and probe set size: Ezr (NM_009510.2, B4,32), CDX2 (NM_007673.3, B1,29), tdTomato
(B5,16). The following amplifiers with Alexa fluorophore were used: 488, 546, and 647. The fixed embryos were serially dehydrated
into methanol and stored at —20°C until use. To rehydrate the embryos, they were washed in PBS +0.1% Triton X-(PBST). Embryos
were incubated in the hybridization buffer for 30 min at 37°C, then in the hybridization buffer containing the probes at 37°C for 16 h.
Embryos were washed 5 times with the wash buffer for 5 min each, then 2 times in 5x SSCT (5x SSC +0.1% Tween 20). Amplifiers
were snap-cooled by heating at 95°C for 90 s and cooled to RT for 30 min under dark conditions. Embryos were incubated in an
amplification buffer for 30 min at RT before adding the amplifiers and incubating the embryos for 80 min at RT in a humid chamber
under dark conditions. Embryos were washed 4 times in 5x SSCT for 5 min each, stained with DAPI (10 ug/ml) from BioLegend in 5x
SSCT for 30 min, then washed two times in 5x SSCT. Embryos were stored in 5x SSC at 4°C until imaging. Images of labeled chimeric
blastocysts were acquired with an Orca Flash 4.0 sCMOS at full resolution on a Nikon Eclipse Ti2 microscope equipped with a Yo-
kagawa CSU W1 Spinning Disk Confocal with 50 um pinholes. A Nikon 40x long working distance water immersion objective, NA
1.15, was used to acquire all channels with exposure times of DAPI: 20ms, Alexa 488: 200ms, Alexa 546: 250ms, and Alexa 647:
250ms.

Molecular dynamics simulations

System preparation and simulation procedure: Canonical B-form DNA was created for each simulated sequence using Avogadro
1.2.0.""° The TEAD4 structure was taken from PDB:5GZB'%, and selenomethionine residues were replaced with regular methionine
by simply renaming the selenium atom to sulfur. In order to align the protein structure from 5GZB onto the created DNA structures, we
aligned the phosphorus atoms from the 4th to 10th residue on chain B of the PDB (which correspond to the bases CATTCCT) to the
corresponding atoms on the created DNA. Since we simulated TEAD4 dimers, we performed this alignment twice, once for each
binding site. This alignment was accomplished using VMD 1.9.3."%> We combined the two translated copies of the TEAD4 protein
and the synthetic DNA sequence into one system using AmberTools20.'*® We used the ff19SB force field for protein atoms,'*°
the bsc1 force field for DNA,'®" and the OPC for water and ions."*? (For a control simulation using CHARMM27, the same procedure
was used to create the initial structure, but the system was built in VMD and TIP3P was used as the water model.) Systems were
solvated in truncated octahedra of water with a 12 A padding between the solute and cell edge. Systems were charge-neutralized
with K+ ions, and additional K+ and Cl-ions were added to bring the system to a concentration of approximately 150 mM KCI. Sys-
tems were minimized using NAMD 2.13."° During minimization, a cutoff distance of 9 Awas used (12 Afor CHARM M27), and solvent
bonds were held rigid, though all solute bonds were unrestrained. A timestep of 2 fs was used, and PME electrostatics was applied
with a grid spacing of 1 A. Ten thousand steps of minimization were performed. For thermalization and production, we used a GPU-
enabled build of NAMD 2.14."2° The same parameters were used as in the minimization, except for the introduction of a Langevin
piston to maintain the system pressure at 1 atm and a harmonic collective variable restraint'® to prevent the ends of the DNA
from fraying during the simulation. This restraint was applied between H1 from the terminal guanine and N3 of the terminal cytosine.
(The DNA ends with a GC pair on each end, and both ends of the DNA were restrained in the same way.) A force constant of 1 kcal/
mol/A2 was applied to maintain this distance at 2 A. During thermalization, all velocities were started from zero and gradually warmed
by applying a Langevin thermostat to raise the system temperature to 310 K during a ten ps simulation. The thermalized systems were
equilibrated for ten ns, the only difference in configuration from the thermalization simulation being the timestep (increased from 1 fs
to 2 fs) and the use of rigid bonds (all bonds, including hydrogen, was made rigid during equilibration and production. Coordinates
were saved for every ps for both equilibration and production runs. Simulation stability was verified by plotting protein and DNA
RMSD values; all simulations were stable. To verify that the simulations had reached equilibrium, we measured BSA values in the
first and last fifth of the trajectory; they showed similar distributions in each case except for the deletion, where the right-hand
TEAD4 detached from the DNA toward the end of the simulation. We have provided dehydrated trajectories along with all analysis
scripts in Python (Python.org), D (dlang.org), and VMD'*® in one folder. Complete, hydrated trajectories, totaling approximately 5 TB
of data, are available upon reasonable request. All MD simulation trajectories can be accessed at https://collaboration.stowers.org/
d1e17b38-9a3d-4900-a623-ac32836b32fc/.
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ChiIP-nexus data processing

ChIP-nexus and PAtCh-Cap single-end sequencing reads were pre-processed by trimming off fixed and random barcodes and re-
assigning them to FASTQ read names. ChlP-nexus adapter fragments were trimmed from the 3’ end of the fragments using cutadapt
(v.2.5)."?” ChlP-nexus and PAtCh-Cap reads were aligned using bowtie (v.1.1.2)'*® and its bowtie to the Mus Musculus genome as-
sembly mm10. Aligned ChIP-nexus and PAtCh-Cap BAM files were deduplicated based on unique fragment coordinates and bar-
code assignments. ChlP-nexus coverage was normalized was acquired through reads per million (RPM) normalization, where the
ChlP-nexus sample coverage was scaled by the total number of reads divided by 10°. ChlP-nexus peaks were mapped using
MACS2(v.2.2.6)'*° with parameters designed to restimulate the full fragment length coverage instead of the single stop base
coverage (--keep-dup = all -f = BAM --shift = —75 --extsize = 150). ChlP-nexus peaks were filtered for reproducibility in a pairwise
fashion using the Irreproducible Discovery Rate framework (IDR) (v.2.0.3).">° The IDR framework selected the peaks used for down-
stream analysis from the largest pairwise comparison.

ChiIP-seq data processing

ChIP-seq single-end sequencing reads were aligned to the Mus Musculus genome assembly mm10 using bowtie2 (v.2.4.2
Aligned ChiP-seq BAM files were deduplicated based on unique fragment coordinates and fragments extended based on the
average experiment fragment length as determined with an Agilent 2100 Bioanalyzer. Normalized ChIP-seq coverage was acquired
using the deepTools subfeature bamCompare (v.3.1.3)'°* using parameters to generate RPKM or log, fold-change scaling
(--scaleFactorsMethod = None --normalizeUsingRPKM --binSize = 50) or (--scaleFactorsMethod = readCount --operation = log2
--binSize = 50). ChlP-seq peaks were mapped using MACS2 (v.2.2.6)'°° with default parameters and an applied background
coverage using the associated WCE ChIP-seq control experiment. ChIP-seq peaks were filtered for pairwise reproducibility using
the Irreproducible Discovery Rate framework (IDR) (v.2.0.3)."%®

)128

TT-seq data processing

TT-seq 75 bp paired-end sequencing reads were aligned using STAR(v.2.7.3)'?° to the Mus Musculus genome assembly mm10 with
the following parameters: outFilterMismatchNmax 2, outFilterMultimapScoreRange 0. SAMtools (v.1.14)">° were then used to keep
alignments with mapping quality greater than 255 (-q 255), and only proper pairs (-f 2) were selected. Strand-specific BAM files for
each replicate and combined were generated using the following parameters (samtools view -b -f 128 -F 16; -b -f 80; -b -f 144; -b -f 64
-F 16) and (samtools merge plus_128.bam with plus_80.bam and minus_144.bam with minus_64.bam). Normalized TT-seq coverage
was generated using bamCoverage (v.3.1.3)'°° parameter Reads Per Kilobase per Million mapped reads (RPKM).

ATAC-seq data processing

ATAC-seq paired-end sequencing reads were aligned using bowtie2 (v.2.4.2)"'?® to the Mus Musculus genome assembly mm10. Normal-
ized ATAC-seq coverage was acquired through RPKM normalization along with following parameters: -bs = 50 --minFragmentLength
10 --maxFragmentLength 1000 --ignoreDuplicate --extendReads

RNA-seq data processing

RNA-seq 100 bp single-end sequencing reads were aligned to the Mus Musculus genome assembly mm10 using STAR (v.2.7.3)'%°
with the following parameters: outSAMtype BAM SortedByCoordinate, outSAMprimaryFlag OneBestScore,outFilterMultimapNmax
20, outFilterMismatchNoverLmax 0.1, outFilterType BySJout,alignSJoverhangMin 8, alignSJDBoverhangMin 1,outFilterMismatchN-
max 999,alignintronMin 20,alignintronMax 1000000,alignMatesGapMax 1000000,limitBAMsortRAM 10000000000,outSAMattri-
butes NH HI MD AS nM, quantMode TranscriptomeSAM GeneCounts. Rsem-calculate-expression (v1.3.0)'“° was used to generate
an expression table with the following parameters: no-bam-output, estimate-rspd, strandedness reverse.

HCR-FISH image analysis

Images were analyzed in Python 3.9. 3D masks were created with the DAPI label using the Cellpose deep learning package.'®” After a
small Gaussian blur of width 1 x 2 x 2 pixels, Cellpose segmentation was performed with the cyto model with a diameter of 60 and
minimum cell size of 10000. The trophoblast cells were segmented well with this method in 3D, but the crowded inner cell mass cells
were frequently corrected by hand using Napari (https://doi.org/10.5281/zenodo.3555620). The masked DAPI was expanded by 4
pixels in the xy direction to encompass more of the cytoplasm HCR label in each cell. The small HCR puncta were found by first per-
forming a Gaussian blur of 2 x 5 x 5 width, then a Laplace filter using Gaussian derivatives with sigma = 0.1, 0.5, 0.5. Finally, the local
maximum peaks in intensity are found using the Scikit-image peak_local_max function with a threshold of 11 for the CDX2 channel
and 15 for both Ezrin and tdTomato channels. The number of HCR puncta found inside each masked cell was recorded. A threshold
was determined to categorize a cell as CDX2 positive (greater than 5 HCR puncta) or tdTomato positive (greater than 15 HCR puncta).
The threshold for tdTomato is greater because the HCR hairpin signal is sometimes found on the outside surface of the blastocyst,
forming brighter and larger puncta compared to the interior cell signal, which would cause too many cells to be categorized as tdTo-
mato positive. All thresholds are held constant between all images of blastocysts.
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Molecular dynamics analysis and visualization

Solvent-accessible surface areas were calculated using VMD,*° with a 1.5 A radius around all atoms. The buried surface area be-
tween the two systems was calculated by subtracting the surface area of the combined system from the sum of the surface areas of
each component system. Plots were generated using Matplotlib, *® Scipy, '*® and NumPy'° with Python 3.10 (python.org). The same
protocol was used to calculate the buried surface area values of crystal structures and the enhanceosome model. Figures were
generated with Tachyon'2® in VMD; trajectory frames were aligned using a frame-by-frame aligner developed previously.'®' Second-
ary structures were determined using STRIDE."*®

BPNet model training

BPNet (v.0.0.23) architecture and software were applied as previously described.'® Model inputs were 1000 bp genomic sequences
centered on the ChIP-nexus peaks of TF of interest. Model outputs were the predicted counts (total reads across each region) and
predicted profile (coverage signal across each region) for TFAP2C, TEAD4, CDX2, YAP1, and GATA3 ChIP-nexus experiments.
~150K IDR-reproducible peaks from TFAP2C, TEAD4, CDX2, YAP1, and GATAS3 ChIP-nexus experiments were pooled and used
as model inputs. Validation datasets were peaks across chr5,6,7,19; test datasets were peaks across chr1,8,9, and peaks across
chrX'and Y chromosomes were excluded from the analysis. The remaining regions were used for model training. Hyper-parameters
were the default BPNet architecture. The trained model performance was assessed by comparing (1) area under the PrecisionRecall
Curves (auPRC) for profiles over different bins of resolution between observed ChlP-nexus profiles and predicted BPNet profiles (Fig-
ure S1C) (2) Jensen-shannon distance for TF binding profile between observed ChIP-nexus signals to predicted BPNet signals for
each TF and (3) counts correlations of observed ChlP-nexus signals to predicted BPNet signals for each TF (Figure S1E) as previously
described.”® The auPRC values were benchmarked alongside replicate-replicate, observed random, and observed-average
observed profile comparisons to establish an in-context understanding of predicted profile accuracy. All BPNet models were imple-
mented and trained using Keras (v2.2.4), TensorFlow1 backend (v.1.70), and the Adam optimizer150. The training used an NVIDIA
TITAN RTX GPU with CUDA v9.0 and cuDNN v7.0.5 drivers. To obtain the Tead double motifs in ESCs for analysis Figure 5G,
TEAD4 ChlIP-nexus experiments were pooled and used as model inputs to train a single TF model; ~15K IDR-reproducible peaks
were used. Validation peak datasets across chr 1,7,3,14, test peak datasets across chr2,8,9, and peaks across chromosomes X
and Y were excluded from the analysis. Hyper-parameters, model performances, and BPNet implementation were performed as
described above. PAtCh-Cap control in ESCs was from.'® We performed DeepLIFT and TF-MoDISco on the trained model to
generate an ESCs-specific Tead motif set. For analysis in Figure 5G, we used Tead double motifs from fold 1. Additional models
were trained with the same architecture as part of 3-fold validation (fold 2 and fold 3). Spearman counts correlation values (top right)
were determined by comparing the observed ChlP-nexus counts with BPNet’s predicted counts at TEAD4 ChlIP-nexus peaks in
ESCs (Figure S5I).

Motif extraction, curation, and island generation

DeepLIFT (v0.6.9.0, derived from the Kundaje Lab fork of DeepExplain (https://github.com/kundajelab/DeepExplain)®® was applied
to the trained BPNet model to generate the contribution of each base across a given input sequence to the predicted output counts
and profile signals. Contribution scores for counts and profile outputs were generated for all 5 TF tasks. TF-MoDISco (v0.4.2.2)°* was
then applied for each TF separately. Regions of high counts contribution were identified, clustered based on within-group contribu-
tion and sequence similarity, and then consolidated into motifs. The Tfap2c, Tead, Cdx2, Gata3, and Yap1 motifs were manually iden-
tified based on their similarity to the known motif and the sharp average ChIP-nexus binding footprint of the corresponding TF. Once
motifs were characterized and confirmed, they were used to label genomic instances by CWM scanning as previously described.'®
Briefly, a motif was mapped based on both Jaccardian similarity to the TF-MoDISco contribution weight matrix (CWM) and sufficient
total absolute contribution across the mapped motif. Then, motifs were filtered for redundant assignment of palindromic sequences
and overlapping peaks. To obtain regions of mapped motif combinations with enhancers for downstream measurement of enhancer
activity to get specific mapped motif pairs, motif islands were generated as described.?° Each island starts as a 500 bp (enhancer
window) region centered on the motif and gets clustered and merged with another nearby motif island if they overlap. In this manner,
islands get extended if a motif is within less than 500 bp. The motif islands, by their motif combinations with motif numbers, read sums
of TFs binding and enhancer activity (provided in Table S4).

Visualization of YAP1 binding and enhancer activity markers

To visualize the correlation between YAP1 binding and the markers of enhancer activity, we selected regions using the following
criteria: BPNet-mapped motifs that were absent of ERVs, were within TEAD4 peaks, and showed TEAD4 binding. At those regions,
we calculated the total ChlP-nexus read counts for YAP1, selected regions above the median value, and sorted based on the total
read counts. These regions were then divided into the top 5000 regions with high YAP1 reads and the 5000 regions with median YAP1
binding. We used this set to calculate normalized reads and generate the TEAD4, YAP1, H3K27ac, Pol I, and Nascent-RNA heatmap.

Motif pair interaction analysis

We selected mapped regions with only one motif pair from the motif islands set for the following motif-pair combinations: Tfap2c-
Tead, Cdx2-Tead, Gata3-Tead4, and Tfap2c-Tead double. We then sorted the regions by the distance between the two motifs

Cell Genomics 5, 100821, April 9, 2025 €8



http://python.org
https://github.com/kundajelab/DeepExplain

¢ CellPress Cell Genomics

OPEN ACCESS

and included distances less than 160 bp for display. YAP1 contribution scores from the binding model were used to make heatmaps
in ggplot. The in silico motif interaction analysis and odds ratio calculations for the co-occurrence likelihood of motif pairs were per-
formed as described.'® Statistics for Figures 3C, S3C, and S3D provided in Table S5 and described in STAR Methods.

Yap1 binding enhancement was calculated by measuring BPNet model predictions across computationally generated sequences
where we injected two motifs—a Tead single motif and another motif (y axis on 1G) into 256 randomized sequences. We next averaged
predictions across these 256 trials. More precisely, this in silico motif interaction analysis was performed to measure “YAP1 binding
enhancement” as described previously.'® When injecting two motif sequences (motif A and motif B) across motif pair distances (d)
ranging up to 150 bp. Yap1 binding predictions were measured in these different simulation scenarios where the sum of the read
counts predicted across a 50 bp window centered on motif A. We measured four different cases: (1) neither motif A nor motif B
was injected into the sequence (hd), (2) motif A only was injected into the sequence (hA), (3) motif B only was injected into the
sequence (hB), and (4) motif A and motif B were both injected into the sequence at a designated distance (hAB). After each case
was measured across all motif combinations and distances, then averaged across trials, the in silico binding enhancement for
each motif in a motif pair was calculated using the following equation: log2((hAB - (hB — h@))/hA). The motif pairs considered
were combinations of the highest affinity sequence representations of Tead single (ACATTCCTG), Tfap2c (CCCTCAGGC), Cdx2
(GCCATAAA), Gata3 (AGATAAG), Jun-Fos (ATGAGTCAT), CTCF (CCACTAGGGGGCG), EIf5 (CCGGAAG), Gata3 double
(AGATAAGATCT) and Tead double (ACATTCCTGGCATTCC).

Enhancer regions selection for reporter assay

This analysis was to predict TFAP2C and TEAD4 binding on genomic regions with different motif distances and how this changes
upon editing the distance between the motifs. From our islands, we selected regions with one Tead single and one Tfap2c motif within
less than 200 bp and resized them to 400 bp putative enhancers, and recorded the coordinates of Tfap2c and Tead4 motifs within the
putative enhancers for mutations. We then identified the nearest genes using the biomaRt package. For each putative enhancer, we
generated sequences for wild-type, mutated motif for each at its original position by mutating the two most contributing nucleotides
to the least contributing within that motif. Then, we inserted the same motif at distances in multiples of 10 or 15 within a 400 bp win-
dow. These sequences were combined into an array to predict TF binding and contributions at a motif range of 50 bp. The resulting
unique enhancer values were exported in R for plotting. The luciferase assay and CRISPR regions were selected by high binding of
TEAD4, TFAP2C, and YAP1 at these putative enhancers and by context-relevant gene targets.

Extracting regions with different Tead double motif spacings

To map regions in the mm10 genome with different Tead double motif spacings, we used pattern matching (with no mismatches) to
identify instances of a single Tead motif (RMATTCCWD). Then, regions with two motifs within 23 bp were identified, and the fre-
quencies by which each motif spacing occurred were recorded. Thus, for a motif spacing of 2, the matched sequence is
RMATTCCNNRMATTCCNN. The predicted TEAD4 binding signal was then calculated for all motifs injected into randomized se-
quences and averaged over 256 iterations. The results from each spacing were then averaged.

Tead motifs variant analysis

To assess the distribution of motif variant frequency, identical sequence patterns of CWM-mapped Tead single and double motif
patterns were grouped, analyzed and visualized. To obtain a robust representation, only patterns that occurred in the top 90th
percentile and occurred at least 10 times were considered. After injecting each sequence pattern into 256 random sequences, BPNet
was used to predict TEAD4 binding. The average predicted signal for each pattern, along with the pattern frequency, was plotted

using ggplot.

Genome-wide TEAD4 binding cooperativity on Tead double motifs

This analysis aimed to investigate the potential synergy between each side (each Tead motif) of the Tead double motifs. We selected
regions that did not overlap with either ERVs or promoter regions, extracted the sequences of the Tead double motifs, and oriented
them in the 5’>3’ direction. We then split the motif sequences into two half-sites, each corresponding to a Tead single motif. We then
predicted the binding of TEAD4 at the half-sites and the complete double motifs injected into random sequences. The values for the
two half-sites were summed and compared to those for the complete double motifs as a measure of synergy between the two half-
sites of TEAD4 double motifs.

Benchmarking motif discovery and analysis

This analysis aimed to benchmark the motif discovery and scanning approaches leveraging PWMs (frequency-based) versus CWMs
(contribution-based) for analyzing Tead motifs. We performed traditional PWM scanning, leveraging MEME (5.3 and 5.5.3) and FIMO
(5.5.3)'%"'%2 We ran MEME (-mod anr) on the top 1,000 TEAD4 ChIP-nexus peaks within the central 101 bp regions of each peak
summit, returning both a Tead single and Tead double motif. Using FIMO (--skip-matched-sequence --parse-genomic-coord
--max-strand --max-stored-scores 10000000), we performed two rounds of motif scanning. The first round was conducted on
Tead single and Tead double motif PWMs returned by MEME, described above (called “PWM-freq”). The second round was con-
ducted on Tead single and Tead double motif PWMs reconstituted from seqlets returned by TF-MoDISco (called “CWM-freq”).
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We compared each set of FIMO-mapped motifs, alongside the motifs mapped using CWM-scanning, described above (called
“CWM-contrib”) (Figure 4C). This resulted in three groups of mapped motifs.

For the three groups of motif mappings (PWM-freq, CWM-freq, and CWM-contrib), we scored the sequence match of each motif
from each mapping group using the CWM-freq PWM as a reference. We next performed in silico analysis of each mapping group,
taking their respective top 5K Tead double motifs and top 20K Tead single motifs based on the sequence-match score described
above. We injected each unique motif sequence from these top-scoring motifs into randomized DNA sequences and predicted
TEAD4 binding. We evaluated genomic context influencing TEAD4 binding predictions by predicting genomic regions that mapped
CWM-contrib motifs labeled as “CWM-contrib in genomic context.”

We performed additional benchmarking of CWM-versus PWM-scanning by leveraging an alternative motif mapping software
called HOMER (4.9.1)'°® to identify motifs. Run under default parameters of fragment size of 200 bp and a variety of allowed motif
lengths (i.e., 9, 13, 18, 20 bp) from the top 1000 TEAD4 ChIP-nexus peaks, HOMER returned a matched Tead single motif, not the
double motif. However, when we looked at the list of de novo motifs similar to the Tead single motif, we could identify the Tead double
motif by specifically searching for the pattern (Figure S4A). Given the long list, it is unlikely that the motif would stand out to someone
not looking for it.
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