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Abstract
Sequence-to-function neural networks learn cis-regulatory rules of many types of genomic data from
DNA sequence. However, a key challenge is to interpret these models to relate the sequence rules to
underlying biological processes. This task is especially difficult for complex genomic readouts such as
MNase-seq, which maps nucleosome occupancy but is confounded by experimental bias. To overcome
these limitations, we introduce pairwise influence by sequence attribution (PISA), an interpretation
tool that combinatorially decodes which bases are responsible for the readout at a specific genomic
coordinate. PISA visualizes the effects of transcription factor motifs, uncovers previously hidden
motifs with complex contribution patterns, and reveals experimental biases of genomics assays. Inte-
grated into a deep learning suite called BPReveal, PISA enables accurate MNase-seq nucleosome
prediction models with reduced experimental bias, allowing the de novo discovery of motifs that
mediate nucleosome positioning and the design of sequences with altered nucleosome configurations.
These results show that PISA is a versatile tool that expands our ability to extract novel cis-regulatory
sequence rules from genomics data, paving the way towards deciphering the cis-regulatory code.
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1 Introduction
Deciphering the cis-regulatory code of gene reg-
ulation in non-coding genomic sequences is one
of the remaining grand challenges in biology. A
complete understanding would allow us to read
the gene regulatory information in the human
genome, identify genetic variants involved in dis-
ease, and design synthetic regulatory sequences
for therapeutic purposes[1]. A key breakthrough
to learning these cis-regulatory sequence rules are

sequence-to-function neural networks[1]. These
models take DNA sequence as input and are
trained to predict the readout of genomics assays
that measure various aspects of gene regulation,
including transcription factor (TF) binding, chro-
matin accessibility, nucleosome maps, transcript
initiation, and gene expression[2–11].

An example is the BPNet family of mod-
els, convolutional neural networks that predict
the profile of genomics data at base resolution,
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in addition to predicting the total read counts
per region[3]. BPNet was originally designed to
learn high-resolution TF binding data[3, 12, 13],
but the sequence-to-profile predictions and the
lightweight architecture make it a robust and
versatile framework for many data types, includ-
ing chromatin accessibility data [14, 15] and
nascent transcript data[9]. Similar architectures
have successfully predicted STARR-seq/MPRA
data[16] and MNase-seq nucleosome maps[17].
During training, these models learn the combina-
torial interplay by which TF binding motifs gen-
erate the experimental readouts for each genomic
region. For example, a model trained to predict
the binding of a single TF will not only learn
that TF’s binding motif, but also other sequence
patterns, such as motifs for cooperative binding
partners[3, 12].

Discovering novel cis-regulatory features
depends, however, on effectively interpreting
a trained sequence-to-function model. Neu-
ral networks have traditionally been seen as
uninterpretable black boxes, but thanks to
several post-hoc interpretation tools specifi-
cally designed for sequence-to-function models,
sequence rules can be extracted from trained
models[3, 4, 18–24]. This can be done by various
attribution methods, including in silico saturation
mutagenesis[25, 26], integrated gradients[27, 28],
or corrected gradients[22]. The attribution meth-
ods deepLIFT[29] and deepSHAP[30] use Shapley
values to assign each base in the input sequence
a contribution score based on how much it con-
tributed to the predicted output. Motifs are
typically among the highest contributing bases
due to their crucial role in the cis-regulatory
code, and they are readily summarized by tools
such as TF-MoDISco[31]. Rules by which motifs
cooperate with each other can also be extracted
from models by systematically predicting the
effect of synthetic sequences in silico[3]. However,
the motifs and their interaction rules tend to be
abstract, making it challenging to deduce how
motifs exert their function at individual regions.
Thus, while these tools have made sequence-to-
function models more interpretable, they are still
limited in what they reveal.

A major drawback is that current attribution
methods rely on reductive representations of how
each base impacts an output prediction. Attribu-
tion methods typically quantify an input’s effects
on the entire output window, and thus do not
reveal where in the experimental profile a motif
exerts its influence and whether the influence is
narrow or broad. Furthermore, the contribution

scores of motifs represent a sum of the motif’s
effects and thus do not reveal whether motifs have
both positive and negative effects on the predic-
tions. For example, a motif may cause an output
feature to shift to the side, thus that motif’s effect
would be positive in one part and negative in
another part of the experimental profile. Since
mixed contributions cancel each other out, it is
possible that certain motifs are missed by current
attribution methods. Furthermore, some bases
may be assigned contribution scores because they
predict experimental biases in the data. Unless
such biases are explicitly regressed out[14, 32], it
is difficult to identify such contributions since the
relationship to the output prediction is unclear.

Here we overcome these obstacles by introduc-
ing a new interpretation tool called pairwise influ-
ence by sequence attribution (PISA), which can
be applied to sequence-to-profile models to visu-
alize the range and level by which each individual
base impacts each genomic coordinate at an indi-
vidual locus. We implemented PISA in a package
called BPReveal, which expands the capabilities
of BPNet and ChromBPNet to support multiple
different data types. We note however that PISA
can be implemented in any sequence-to-profile
modeling framework to visualize and interpret the
learned sequence rules[2, 4, 8].

We first describe PISA and the two types
of plots, squid plots and heatmaps, which PISA
creates for individual genomic regions. We then
analyze previously modeled genomics data by re-
training these data on BPReveal and creating
PISA plots for known regulatory regions. These
plots reveal details of the learned sequence rules
that were previously hidden but are consistent
with known biological mechanisms. This includes
a motif’s influence range, previously hidden motifs
that contain a mixture of positive and negative
contributions, and experimental bias.

We then leverage BPReveal and PISA to train
a model that predicts bias-minimized MNase-
seq[33] nucleosome data. These models allow us
to de novo discover TF motifs important for
nucleosome positioning and visualize their range
of effects. Finally, we show as proof-of-principle
that the model can be used to generate sequence
designs with altered nucleosome positioning, one
of which we validate experimentally. These results
pave the way to more systematically study the
relationship between DNA sequence, nucleosome
positioning, and gene regulation.
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Fig. 1 PISA and its applications (a) A sequence-to-profile model uses DNA sequence as input and learns to predict
experimental readouts from genomic assays. (b) Previous interpretation tools have assigned contribution scores to the input
bases based on properties of the entire output profile. (c) Our PISA approach assigns contribution scores for each output
individually, resulting in a 2D matrix Pi→j . (d) Squid plots show high PISA values as colored lines that connect an input
base to an output position. In this example, the TCA motif has a strong effect, and the bulk of this effect is to the left of the
motif’s position. (e) A heatmap of the same region used in (d) shows PISA values as a colored grid. While less immediately
readable than the squid plots, heatmaps are useful when multiple effects overlap or when experimental biases are present
at the diagonal. (f) PISA is implemented in the BPReveal package and has multiple applications further described in this
study.

2 Results
2.1 PISA reveals pairwise

relationships between input
sequence and output profile

We created PISA as an application for sequence-
to-profile models, which make separate predic-
tions for each output position (Figure 1(a)).
This feature allows attribution methods such as
deepSHAP[29, 30] to be applied to individual out-
put positions, rather than for the entire predicted
output window as done traditionally[3](Figure
1(b)). In our implementation, we use deepSHAP
on a BPNet model and generate, for each output
base j, contribution scores for each input base i.
Thus, for a particular input sequence, Pi→j rep-
resents the Shapley value assigned to base i from
the model’s output at base j. Pi,j represents these
values in a two-dimensional matrix (Figure 1(c)).

To visualize this matrix, we made two types
of PISA plots. In the PISA squid plot (Figure
1(d)), we sought to create a simple summary of
the range by which sequence patterns impact the
output signal. The input bases are displayed at
the bottom of the squid plot as traditional con-
tribution scores, with lines drawn from base i at

the bottom to base j in the predicted output pro-
file at the top. The color of the line represents the
contribution score Pi→j (positive in red, negative
in blue), and PISA values below a threshold are
not shown for clarity.

The PISA heatmap (Figure 1(e)) provides
a finer-grained representation, where the entire
PISA matrix is visualized as a colored grid: The
pixel at position i on the x-axis and position j
on the y-axis represents Pi→j (positive in red,
negative in blue). For reference, the traditional
contribution scores are again shown at the bot-
tom, while the output prediction is shown on the
right. In this grid, the diagonal is where the input
base affects the output at the same position (i.e.,
i ≈ j). As we will see later, this diagonal of
local influence is often where experimental bias is
found.

To leverage PISA and its downstream appli-
cations (Figure 1(f)), we implemented a package
called BPReveal, which encompasses the capa-
bilities of BPNet[3] and ChromBPNet[14]. Thus,
BPReveal models may make use of any combi-
nation of multi-head, multi-strand architectures
and may leverage corresponding bias models to
remove experimental biases from data (see archi-
tecture in Extended Data Figure 1).
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Fig. 2 Visualizing the influence range of motifs using PISA. (a) Squid plot showing that the Oct4-Sox2 motif
(purple) determines Oct4 binding in a broad window. A multi-head model was trained on stranded high-resolution binding
data (ChIP-nexus) for the pluripotency TFs Oct4, Sox2, Klf4, and Nanog. The predicted Oct4 ChIP-nexus data at the
Lefty1 enhancer are shown at the top (plus strand in dark purple, minus strand in light purple). The PISA squid plots
(both strands are overlaid) show that the Oct4 task assigns broad importance to the Oct4-Sox2 motif, consistent with
Oct4 being a pioneer TF whose activity is not governed by other nearby motifs. (b) Squid plot showing that Nanog motifs
(blue) promote Nanog binding in a narrow range, while an Oct4-Sox2 motif (pink) has a broad influence. To demonstrate
the influence of the Oct4-Sox2 motif, a separate model was trained only on Nanog binding. The predicted Nanog ChIP-
nexus data at the Lefty1 enhancer are shown at the top (plus strand in dark blue, minus strand in light blue). The broad
effect of the Oct4-Sox2 motif and the narrow effect of the Nanog motifs are consistent with Oct4 and Sox2 being pioneering
TFs, while Nanog is not. (c) Squid plot of the sog enhancer from a model trained on bias-minimized ATAC-seq data from
fly embryos[15]. The chromatin accessibility is largely determined by three motifs for the pioneer factor Zelda (turquoise).
While aesthetically pleasing, the squid plot is difficult to interpret due to the many overlapping lines. (d) A PISA heatmap
shows the overlapping effects of the three Zelda motifs more clearly, and reveals that the central motif drives chromatin
accessibility over a window of ~800 bp.

2.2 PISA visualizes the influence
range of TF motifs

To visualize how TF motifs influence output pre-
dictions, we first applied PISA to TF binding data
(Figure 2) in an already-characterized system. We
trained a BPReveal model on previously pub-
lished high-resolution ChIP-nexus data of Oct4,
Sox2, Klf4, and Nanog in mouse embryonic stem
cells[3], which gave results on par with the original
BPNet model (Extended Data Table 1). We then
generated PISA squid plots for Oct4 and Nanog
binding at a key pluripotency enhancer, Lefty1,

which contains three Nanog motifs and an Oct4-
Sox2 motif (Figure 2(a,b)). This revealed distinct
influence ranges of the Nanog and Oct4-Sox2
motifs.

The PISA squid plot for Oct4 binding (Figure
2(a)) showed that the Oct4-Sox2 motif directs
the Oct4 binding footprint in a broad window
of ~150 bp. The Nanog motifs show no contri-
bution to Oct4 binding. The PISA squid plot
for Nanog binding (Figure 2(b)) shows that the
three Nanog motifs contribute to Nanog binding
more locally, while the Oct4-Sox2 motif pro-
motes Nanog binding in a broader window. The
broad effect of Oct4-Sox2 and the local effect of
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Nanog are likely because Oct4 and Sox2, but not
Nanog, are pioneer TFs in mouse embryonic stem
cells[34, 35].

To illustrate the applicability of PISA in a
different data type, we next trained a BPRe-
veal model to predict bias-minimized ATAC-seq
chromatin accessibility data from Drosophila[15],
yielding results on par with the previously pub-
lished ChromBPNet model (Extended Data Table
2). Our model rediscovered the Zelda motif,
which is known as a pioneer TF that opens
chromatin[15, 36, 37]. We then generated a PISA
squid plot and heatmap for the well-studied sog
shadow enhancer.

Each Zelda motif showed a wide squid-like
pattern reaching a region of several hundreds of
bases around the motif (Figure 2(c)). Likewise,
the heatmap shows an influence range of ~800 bp
for the central Zelda motif (Figure 2(d)), consis-
tent with Zelda being a key pioneer TF in the
early Drosophila embryo[15, 36, 37].

We conclude that PISA directly visualizes the
influence range of motifs at single loci, providing
clues to the effect of those motifs on chromatin
state.

2.3 PISA reveals complex motif
effects

We next used PISA to explore motifs that influ-
ence the output signal positively at some parts of
the region, while having a negative influence in
other parts. When using traditional attribution
methods, such mixed effects might cancel each
other out, causing these motifs to be misrepre-
sented or difficult to discover.

Serendipitously, the PISA heatmap of the
chromatin accessibility at the sog shadow
enhancer provided such a pattern (left edge of
Figure 2(d), enlarged in Figure 3(a, left)). We
observed a pattern with central negative contri-
butions (blue) flanked by positive contributions
(red), mirroring the predicted output profile at
this position, i.e. a pronounced central dip flanked
by peaks on each side, as shown on the right
(Figure 3(a, left)). The mixed negative and pos-
itive contributions nullify each other since the
counts contribution track below shows no contri-
bution (shown below with an arrow).

The sequences that produce this pattern cor-
respond to a CA repeat (referred to as CAckle),
which has previously been shown to boost TF
binding and enhancer activity[13, 38]. Although
CAckle sites have dual positive and negative con-
tributions, the total effect is in some instances
not neutral, allowing us to discover them using

Fig. 3 Two motifs with positive and negative
effects. (a) A CA repeat creates a local dip in chromatin
accessibility in ATAC-seq. (Left) The CA repeat motif,
which we refer to as CAckle, has both negative (blue) and
positive (red) contributions in a PISA heatmap, and thus
is not detected in the counts contribution score (arrow).
It creates a small (~50 bp) dip in accessibility surrounded
by a shoulder of slightly higher accessibility, as seen in the
predicted output profile on the right. The motif’s entire
effect range is on the order of 100 bp, which is much smaller
than the ~800 bp effect of the Zelda motif on the right of
the heatmap. (Right) We simulated the effects of mutat-
ing CAckle motifs, and found that replacing the CA repeat
with random nucleotides abolished the local dip and shoul-
der effect, but had a minimal effect on the global counts.
(b) Positive and negative effects are a signature of histone
modifications. (Left) A model trained on ChIP-seq data for
H3K27Ac, a marker of enhancer activation, shows a sim-
ilar negative-and-positive pattern around a Zelda motif.
This is consistent with Zelda causing the nucleosomes in an
enhancer to be depleted (hence the central dip) and neigh-
boring nucleosomes to be acetylated (hence the positive
shoulder). Unlike the short-range CAckle effect, the Zelda
motif drives acetylation in a 2 kb window. (Right) Per-
turbing many instances of the Zelda motif shows the same
effect genome-wide: Mutating the Zelda motif decreases
both the depth of the central dip and the acetylation of
flanking nucleosomes.

TF-MoDISco and motif scanning. To test their
effect, we performed simulated mutations of 712
CAckle motifs identified in the genome (Figure
3(a, right)). Upon mutation, the dip with the
flanking peaks flattened out, but the overall read
counts remained similar, confirming a mixed neg-
ative and positive effect of CAckle motifs on
the chromatin accessibility. Although a CAckle-
like motif also contributes to the Tn5 enzymatic
bias, the central depletion around instances of
the CAckle motif is also reflected in experimental
ATAC-seq data (Extended Data Figure 2)
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Another example of a complex motif effect is
provided by ChIP-seq data of H3K27ac, a his-
tone modification that flanks active enhancers.
We trained a model on H3K27ac ChIP-seq data
from early Drosophila embryos[15] and visual-
ized known enhancers using PISA. This revealed
that the H3K27ac profile predictions strongly
depend on Zelda motifs (Figure 3(b, left)). A
Zelda motif creates a dip in H3K27ac at the
center of the enhancer, seen as negative contribu-
tions (blue), while also promoting H3K27ac at the
enhancer’s flanks, seen as positive contributions
(red). This trend was again confirmed by mutat-
ing 325 Zelda motifs, which decreased H3K27ac at
the flanks and made the central dip more shallow
(Figure 3(b, right)). This dual effect is consis-
tent with Zelda’s role as pioneer TF that depletes
nucleosomes in the center, while recruiting the
acetyltransferase Nejire to acetylate the flanking
nucleosomes[39, 40].

Thus, the dual pattern of the Zelda motif
in the H3K27ac model is similar to that of
the CAckle motif in the chromatin accessibility
model, but the range of the effect is an order of
magnitude longer. Zelda’s negative contributions
span several hundred bases, which is the range
by which Zelda created chromatin accessibility
(Figure 2(d)), while the positive contributions at
the flanks extend to ~1 kb on each side. These
results show how PISA provides additional spa-
tial resolution for interpreting how motifs exert
their effect.

2.4 PISA detects experimental
biases and enables the
generation of a bias-corrected
MNase-seq model

If PISA is able to identify how each base posi-
tionally impacts the output predictions, it should
visualize experimental biases, which tend to be
local (Figure 4). For example, ATAC-seq uses the
transposase Tn5 to measure chromatin accessibil-
ity, but Tn5 has a local preference towards certain
motif-like sequences[41]. This problem has been
elegantly solved in a package called ChromBPNet,
where a separate BPNet bias model is trained on
data of closed regions that contain the bias but
minimal accessibility[14]. The frozen bias model
is then used to train a new BPNet model which
learns the residual signal that must be added to
the bias in order to predict the experimental pro-
file. In this way, the experimental bias and regula-
tory sequence rules are separated, partitioned into
distinct models for downstream interpretation.

To visualize the Tn5 bias, we inspected the
BPReveal models that were trained on the early
Drosophila embryo ATAC-seq data[15], result-
ing in a bias model and a residual model of
bias-minimized ATAC-seq. We generated PISA
heatmaps of the combined model of the observed
data (without bias correction), the Tn5 bias
model, and the residual model with the bias-
corrected ATAC-seq data, all using the sog
shadow enhancer as an example (Figure 4(a)).

In the combined ATAC-seq model, the bias
appears as strong local effects in the PISA
heatmap, visible as a diagonal band that over-
shadows the weaker effects of the three Zelda
motifs that appear as vertical stripes (Figure 4(a,
left)). In the bias model, all that is left is the diag-
onal band (Figure 4(a, center)), while the residual
(i.e., bias-minimized) model only shows the effects
of the three Zelda motifs (Figure 4(a, right)). This
confirms that the diagonal band is indeed the bias
and that the bias was successfully removed in the
residual model.

As a method for quantifying the effectiveness
of the bias removal, we created a base attribu-
tion total (BAT) plot, which shows the average
contribution of each input base to the output at
a given distance (Figure 4(b)). More precisely,
BAT(∆) = meani(Pi→i+∆), where ∆ is the x-
axis in the heatmap. For the bias model and
the uncorrected ATAC-seq model, the BAT plot
shows the local bias as 100-fold increase within
10 bp (Figure 4(b left, center)), while this signal
is not present in the bias-corrected model (Figure
4(b, right)).

Having confirmed that PISA reveals experi-
mental bias in BPReveal model predictions, we
next examined other data types. Since some data
types lack appropriate control regions for train-
ing a bias model, PISA may even help create
an experimental bias track. A good example are
nucleosome maps created by MNase-seq, which
have a strong AT sequence bias[33, 42]. However,
nucleosomes are present across the genome and so
there are no regions that could be used to train a
bias model[43].

We trained a BPReveal model on MNase-
seq data from S. cerevisiae since yeast nucleo-
some occupancy is well-studied[44–46], the small
genome size permits very high coverage data[47],
and we can benchmark our results against pre-
vious deep learning models[25]. Since the MNase
enzymatic bias is found at the fragments’ end,
we recorded the 5′ and 3′ ends of each MNase-
seq fragment as two tracks and trained BPReveal
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Fig. 4 PISA reveals enzymatic biases. (a) The ChromBPNet bias correction strategy effectively removes experimental
bias. (Left) A model trained on ATAC-seq endpoints in accessible regions learns the effects of motifs (faint vertical bands),
but also learns enzymatic bias (strong diagonal band). (Center) A model trained on closed regions of chromatin learns
enzymatic bias, but not pioneering motifs. (Right) The ChromBPNet architecture removes the patterns learned by the
bias-only model and assigns importance only to the pioneering motifs. The tracks below all PISA heatmaps show the read
count contributions, which captures the total accessible signal well, while the profile contributions more strongly capture
the experimental bias (Extended Data Figure 3). (b) A base attribution total (BAT) plot quantifies the strength of the bias.
The first two models show a large spike in contribution near the diagonal of the PISA heatmap, while the right plot shows
no such central spike. (c) PISA enables bias-minimized MNase-seq models. (left) A model trained on MNase endpoints
learns the enzymatic bias twice: Once on the 5′ end of the nucleosome-sized fragment and once again on the 3′ end. By
aligning and subtracting the PISA values for each strand (see section 4.5), we construct a synthetic bias track that can be
used to correct MNase sequence bias using the ChromBPNet architecture. Tracks below all PISA heatmaps show the tracks
for profile contributions, not count contributions, since the total read counts do not substantially change across regions
when predicting nucleosome profiles. (d) A BAT plot quantifies the effectiveness of MNase bias removal. The large spikes
of importance at +80 and -80 are enzymatic bias, and these spikes are eliminated in the bias-corrected model (right).

to predict both tracks simultaneously (see section
4.5).

BPReveal achieved high prediction accuracy
on experimental data from held-out chromosomes
(Extended Data Table 3). It achieved higher pre-
diction accuracies than the model by Routhier et
al[25], using the same training data, even when
the model performance was scored by Pearson
correlations, which are part of the loss function

that the Routhier model optimizes during train-
ing (Extended Data Table 4). This suggests that
BPNet-derived models trained with the BPReveal
framework are well-suited to learning MNase-seq
data in yeast.

We then generated PISA heatmaps to assess
whether we could distinguish predicted biologi-
cal effects on nucleosome positioning from those
representing the experimental bias. The PISA
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heatmaps for the 5′ and 3′ predictions both
showed a broad diagonal band of nucleosome size
with subtle positive and negative contribution
scores throughout (shown combined in Figure 4(c,
left)). This signal likely represents intrinsic DNA
sequence properties that determine the readiness
to wrap around the histone core[46, 48–51]. But
the PISA heatmaps also showed a strong, nar-
row diagonal band, either to the left (in the 5′

model) or the right (in the 3′ model) of the
intrinsic nucleosome signal (Figure 4(c, left)).
This signal represents highly local effects in BAT
plots (Figure 4(d, left)) and thus, as with ATAC-
seq data, local enzymatic sequence bias strongly
contributes to the predictions.

Reasoning that a bias-minimized MNase-seq
model would predict a cleaner nucleosome pro-
file and enhance interpretation[14], we explored
ways to extract the bias from the PISA values
and derive a synthetic bias track. The model’s
independent prediction of the 5′ and 3′ ends
serendipitously provided us with a method to
extract the bias. Since the PISA heatmaps of
the 5′ and 3′ ends differ in the bias but essen-
tially not in the biological signal, subtracting the
two maps cancels out the biological portions and
leaves behind pure enzymatic bias. The effective-
ness of this approach is seen in BAT plots (Figure
4(d)).

The second innovation came from the insight
that the efficiency property of Shapley values
allows us to sum up the PISA values from the bias
and construct a genome-wide synthetic MNase
bias track (Section 4.5). With this track, we
then trained an MNase bias model and confirmed
(using TF-MoDISco) that we did not learn any
TF motif (Extended Data Figure 4).

This bias model then allowed us to train and
cross-validate a combined model that captures the
bias-minimized nucleosome signal in the residual
model. PISA heatmaps confirmed that we have
successfully separated the MNase-seq bias and
nucleosome signal (Figure 4(c)).

To benchmark the bias removal, we compared
our results to those of other MNase bias removal
methods. We trained a bias model on MNase-seq
data obtained from naked DNA[47, 52] or used
statistical modeling such as seqOutBias[32] before
training on the MNase-seq data. Both of these
methods left more uncorrected enzymatic bias
than our corrected prediction (Extended Data
Figure 5). Thus, PISA not only visualized the
bias in MNase-seq data, but allowed us to derive
a synthetic bias track to train a bias-minimized
MNase-seq model.

2.5 PISA visualizes how de novo
discovered motifs affect
nucleosomes

We next examined the bias-corrected MNase-seq
nucleosome prediction tracks and compared them
to the original MNase-seq data. We used the Ade1
gene, a known genetic marker in yeast, as an
example locus (Figure 5(a)). To allow an intu-
itive reading of the nucleosome locations, we show
the data as the midpoints of the nucleosome-sized
fragments, which are proxies for nucleosome cen-
ters (dyads), rather than the 5′ and 3′ ends that
we trained the model on (Section 4.1.3).

The original MNase-seq midpoint data and
the predicted midpoint data both look spiky, but
after removal of the bias, the nucleosome signal
was notably smoother (Figure 5(a)). The bias
removal also reduced the background signal in
the contribution scores, revealing motifs with high
profile contribution scores, e.g. the Reb1 motif in
Figure 5(a).

We then ran TF-MoDISco to discover motifs
de novo using either the contribution scores from
the uncorrected model, the bias-only model, or
the bias-corrected model. The bias-only model
only learned motifs related to the MNase sequence
bias, most notably sequences that transition from
AT-rich to GC-rich regions, consistent with pre-
vious studies on the bias of MNase[33, 42].
(Extended Data Figure 4)

In contrast, the motifs discovered by TF-
MoDISco from the bias-corrected model were
recognizably more biologically relevant, includ-
ing known motifs involved in nucleosome posi-
tioning such as Abf1 and Reb1, polyA repeats,
CG-rich sequences, and a CGCG motif. The uncor-
rected model also identified these motifs but
among many bias motifs. While the nucleosome-
positioning motifs were known[45, 54, 55], no neu-
ral network model has previously discovered these
motifs de novo and helped provide mechanistic
insights[17, 25, 56].

To visualize and characterize the nucleosome
positioning effects of the discovered motifs, we
analyzed them with PISA. Reb1 (Figure 5(b)) and
Abf1 (Figure 5(c)) are barrier elements that cause
nucleosomes to be regularly positioned around
the motif[57], but the range of this effect was
not clear. PISA squid plots revealed that these
two motifs induce an oscillating positional sig-
nal of ~750 bp (or 4-5 nucleosomes) on each side
of the motif. Crucially, this oscillating effect is
uniquely visible through PISA plots since the
profile contribution tracks at the bottom do not
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Fig. 5 The bias-corrected MNase-seq model discovers motifs de novo that positions nucleosomes (a) The
model learns and corrects MNase data. The top track shows the MNase-seq data as fragment pileup, a common way
of plotting such data. Our models instead predict the endpoints of the fragments, providing higher resolution data. For
convenience, we present the model’s predictions as midpoints. The model’s predictions match the experimental data well,
and the corrected data remove much of the high-frequency noise in the uncorrected data. The importance of this correction
is most visible in the contribution scores, which are noisy and fuzzy in the uncorrected model but clearly show a Reb1 motif
in the corrected model. (b) A PISA squid plot of the region in (a). The central Reb1 motif shows a long-range ringing effect.
(c) A representative Abf1 motif shows a similar long-range ringing effect. (d) The polyA motif is more subtle than Reb1 or
Abf1. It tends to be more distributed, as in this example where a block of polyA has been annotated by TF-MoDISco, but
several smaller clusters of A also contribute to position nearby nucleosomes. (e)The Rsc3 motif also creates a ringing effect.
In this instance, it is coupled with several short T repeats, which likely serve as a very degenerate polyA. (f) The widely-
used Widom 601 sequence that strongly positions nucleosomes in vitro does not have a strong effect in vivo, consistent with
previous observation[53]. PISA was applied to 50 random genomic regions where the Widom 601 sequence was inserted
and then averaged. The average output prediction (601 inserted) is also shown to the right, in comparison to those of the
wild-type sequences. The effect is, on the whole, very small. The complete analysis showing all plot types for all motifs is
in Extended Data Figure 6.

show this effect. The precise role of motifs in
nucleosome positioning has long been a topic of
debate[46, 54, 55, 58–63], and our models suggest
that motifs play a major role across much of the
genome.

PISA also shows long-range nucleosome posi-
tioning effects of polyA tracts (Figure 5(d)).
Sequences of multiple As are known to resist DNA
bending and are more often found in linker regions
between nucleosomes[64–66]. We found a large
number of them contributing to the nucleosome
signal, many with weak and distributed effects
that are best seen on PISA heatmaps (Figure
5(d)), rather than PISA squid plots (Extended
Data Figure 6). Like the Abf1 and Reb1 motifs,
polyA tracts also have oscillating long-range posi-
tioning effects over ~5 nucleosomes on each side.
A similar pattern is observed for the CGCG motif
(Figure 5(e)), which is known to be a recognition
signal for the RSC remodeler complex[67, 68].

Finally, we asked what pattern the model
would predict for the Widom 601 sequence, a

~150bp-long sequence often used in in vitro exper-
iments to position nucleosomes[69]. To provide
a neutral sequence context, we injected the 601
sequence into 50 random sequences, made predic-
tions, performed PISA, and averaged the results
(Figure 5(f)). The Widom 601 sequence only
showed small effects on nucleosome positioning
and showed predominantly intrinsic (short-range)
effects. This is consistent with previous exper-
imental evidence suggesting that the Widom
601 sequence does not position nucleosomes in
vivo[53] and points to differences between in vitro
and in vivo experiments. These results highlight
the advantage of obtaining mechanistic insights
from models trained on in vivo genomics data.

2.6 BPReveal allows the
engineering of sequences with
altered nucleosome properties

With the advent of deep learning in genomics,
there has been a push to use model predictions to
streamline the design of synthetic sequences[70,

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2025. ; https://doi.org/10.1101/2025.04.07.647613doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.07.647613
http://creativecommons.org/licenses/by/4.0/


Fig. 6 BPReveal’s genetic algorithm (GA) gener-
ates sequence designs for nucleosomes that can be
experimentally validated. (a) The GA feature in BPRe-
veal was directed to reduce nucleosome occupancy in the
blue region centered on the high-affinity Pho4 motif with
three mutations. It returned mutations that induce a pre-
dicted shift of the nucleosome to the right side (indicated
with an arrow). (b) The mutations introduced a new Abf1
motif (orange diamonds) about 20 bp away from the Pho4
motif, as visualized by the contribution scores obtained
with DeepSHAP. An additional mutation (black hour-
glass) has only small effects. (c) Experimental validation
of this sequence design was performed by CRISPR/Cas9-
mediating editing of the endogenous yeast PHO5 locus and
performing MNase-seq on the wild-type and mutant strain
(shown smoothed as there is no bias correction). This con-
firmed that the nucleosome is shifted from the Pho4 motif,
while leaving the rest of the nucleosome landscape largely
unperturbed.

71]. To enhance the flexibility of BPReveal’s
interpretation tools, we implemented a genetic
algorithm (GA), to mutate sequences in a way
that maximizes a desired experimental outcome,
defined and bounded by the user. We used the GA
to change the nucleosome configuration on the
well-characterized Pho5 promoter, which is bound
and induced by the TF Pho4 under phosphate
starvation[72, 73](Figure 6).

Under repressed conditions (i.e., high phos-
phate), a low-affinity Pho4 motif is exposed, while
a high-affinity Pho4 motif is covered by a nucleo-
some (Figure 6(a))[74–76]. Since previous studies
have analyzed the consequences of mutating the

two Pho4 motifs[77], we decided to manipulate
the nucleosome configuration without perturbing
the motifs.

We used the GA to create a sequence design
that minimizes the nucleosome on the high-
affinity Pho4 binding site with a maximum of
three mutations. We obtained a design where two
of the designed mutations introduce a new Abf1
motif, which is predicted to create a nucleosome-
depleted region and expose the Pho4 motif by
shifting the nucleosome to the right (arrow in
Figure 6(a)). A third mutation only slightly
enhanced the effect (Figure 6(b)). By repeating
the GA sequence search, we found that the intro-
duction of TF motifs was a frequent solution. Of
the 409 different runs, 77 of them introduced a
new Abf1 motif, and 122 introduced a Reb1 motif.

To validate the GA’s sequence design, we cre-
ated a yeast strain where we introduced the three
mutations via CRISPR/Cas9-mediated editing.
We then performed MNase-seq to map the nucle-
osomes in the wild-type strain and the mutant
strain (Figure 6(c)). We found that the nucleo-
some that covers the Pho4 binding site in wild-
type is shifted to the right in the mutant, thereby
exposing the high-affinity Pho4 site, as we had
intended (Figure 6(c)).

These experimental results demonstrate that
our nucleosome model allows the design of strains
with altered nucleosome properties, which rep-
resents an opportunity for studying the role of
DNA sequence, nucleosome positioning, and gene
regulation in the future. Taken together, this
highlights the versatility of BPReveal in predict-
ing and interpreting a variety of genomics data
sets, and the use of models to create synthetic
sequence designs.

3 Discussion
PISA is, at its core, a way to ask how one stretch
of DNA affects a biological signal in its surround-
ing region. We are not the first to ask this ques-
tion, as classical genetic screens and statistics-
based approaches of analyzing genomics data
have long provided useful insights[78]. With the
recent introduction of interpretable deep learning
techniques in genomics, we now have an oppor-
tunity to investigate ever-finer spatial details of
the sequence-to-function relationships that ulti-
mately form the cis-regulatory code. PISA adds
to the current set of interpretation tools and has
multiple distinct advantages.

PISA works on individual loci in a wild-type
context. Traditional statistics-based methods are
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good at identifying abstract patterns and associa-
tions in genomic data, but applying these rules at
individual regions of interest has been very chal-
lenging. Since deep learning models are trained
to make accurate predictions for each region,
they inherently learn how to identify and com-
bine multiple sequence elements to predict the
experimental outcome in a given region. How-
ever, current attribution methods do not fully
capture subtle cis-regulatory rules. PISA bridges
this gap by providing a precise map by which rel-
evant sequence elements drive genomics readouts
at single-base resolution.

PISA plots are inherently visual and intu-
itive. We have used PISA heatmaps and squid
plots here for four different experimental datasets
from three different organisms, and continue to
find them useful in many contexts. The visualiza-
tions highlight the range and patterns by which
motifs affect output predictions, and we could
often link these patterns to known mechanisms.
For example, in a model of TF binding in mESCs,
PISA revealed a different influence range of the
Oct4-Sox2 and Nanog motif, consistent with their
distinct effects on chromatin accessibility[34]. We
also discovered a strong, localized footprinting
effect on chromatin accessibility by a CA-repeat
motif, CAckle, which is obscured when using tra-
ditional attribution methods but known to be
functional in transcription studies[13, 38].

PISA provides an easy way to identify irrele-
vant patterns such as experimental biases. Enzy-
matic biases in genomics assays are typically
mixed in with the biological signal, and thus hard
to distinguish with traditional attribution meth-
ods. In PISA heatmaps, the contribution scores of
local enzymatic biases are distinguishable as dis-
tinct diagonal bands. In the case of MNase-seq,
we leverage this property to create an experimen-
tal bias track, which in turn can be used to train
a bias-minimized MNase-seq model.

The ability to train a bias-minimized MNase-
seq model from sequence alone and discover TF
motifs that contribute to the nucleosome organi-
zation is unprecedented. Using yeast data, we dis-
covered and visualized the long-range nucleosome
positioning effects of motifs, and designed min-
imal mutations that precisely reposition nucleo-
somes in vivo. We expect this approach to be
applicable to more complex organisms, as long as
the MNase-seq data are of high quality and high
coverage. Taken together, BPReveal and PISA
provide a useful method for training a variety of
experimental data and visualizing the intricate
rules of the cis-regulatory code across species.

There are limitations of PISA that should be
kept in mind. First, PISA plots are only as good
as the underlying model, and thus careful per-
formance benchmarking is required before invest-
ing into interpretation. Second, PISA reveals
sequence rules that the model learned, but not
the proteins and regulatory mechanisms that cre-
ate these rules inside cells. For example, PISA
revealed that the Zelda motif not only drives chro-
matin accessibility but also the acetylation on
the flanking nucleosomes. Supported by previous
data[15, 79], we can guess that Zelda interacts
with an acetyltransferase, but we cannot rule out
that the effect is mediated indirectly through the
creation of open chromatin. Such gaps in knowl-
edge are an opportunity for additional experi-
ments, with the long-term goal of linking sequence
rules and mechanisms in a coherent framework.

4 Methods
4.1 Data
4.1.1 ChIP-nexus
A BPReveal model was trained on Oct4, Sox2,
Klf4, and Nanog ChIP-nexus experiments in
mouse R1 mESC lines using the same processed
bigwig tracks and peak coordinates as in the origi-
nal study (GSE137193[80, 81]). To the extent pos-
sible, we maintained the same model parameters
as used previously.

4.1.2 ATAC-seq
A ChromBPNet-style model[14] was trained
on ATAC-seq data from 2-3h Drosophila
melanogaster embryos using the BPReveal frame-
work. The same processed bigwig files, peak
coordinates, and model parameters were used for
training (GSE218852[15, 82]).

4.1.3 Published MNase-seq data
We used a published MNase-seq data set, specif-
ically the wild-type experiments SRR12073988
and SRR12073989 from GSE153035[47]. Paired-
end reads were aligned against the sacCer3
genome using bowtie2 --very-sensitive -X
1000[83] (Bowtie2 version 2.5.1). Aligned frag-
ments that spanned more than 1 kb were elimi-
nated, but no other size selection was performed.
For all paired reads, we created coverage tracks of
the 3′ endpoints, 5′ endpoints, and fragment mid-
points. (3′ and 5′ in this context are with respect
to the genome; therefore all fragments are effec-
tively treated as being on the positive strand.)
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The code used for this processing is included in
the code repository for this paper at https://
github.com/zeitlingerlab/bpreveal-manuscript.

For the performance comparison against
Routhier et al[25], we used the tracks in the
GitHub repository for that paper.

4.1.4 Histone modification ChIP
We used published H3K27ac ChIP-seq data
from[15, 82], specifically from the GSM6757761,
GSM6757762, GSM6757763 and GSM6757764
datasets. We used the same pipeline to call peaks
and process bigwig files.

4.1.5 Custom yeast mutants
The S. cerevisiae strain BY4741, a derivative of
S288C with the genotype MATa his3Δ1 leu2Δ0
met15Δ0 ura3Δ0 was used. A single isolate was
whole-genome sequenced before strain construc-
tion. The three point mutations were introduced
using CRISPR Cas9-based genome editing as
described previously[84]. A 20 bp gRNA close
to the mutation site was designed with BsaI
overhangs and ordered as oligonucleotides. The
gRNA-encoding oligonucleotides were annealed
and cloned into the pCASB plasmid (Addgene
190175) using BsaIHF-v2 enzyme and T4 DNA
ligase. The cloning reaction was transformed into
E. coli and plated on Kanamycin selection plates.
The plasmids were then isolated and verified by
Sanger sequencing. A 160 bp homology-directed
repair (HDR) template was designed to con-
tain the desired mutant sequence, synthesized by
Genescript and amplified by PCR. Yeast cells
were then co-transformed with the cloned plasmid
encoding Cas9 and gRNA, along with the HDR
template. Transformants containing pCASB were
selected on G418-containing media. Colonies were
streaked twice, and isolates were screened for loss
of the gRNA plasmid via replica plating to G418.
For each isolate, genomic DNA was extracted,
and the region of interest was amplified by PCR,
purified, and verified by Sanger sequencing.

4.1.6 MNase-seq experiments
MNase-seq experiments were performed essen-
tially as described previously[85] in replicates.
Yeast cultures were grown at 30°C in YPD to
OD600 0.8-1 and crosslinked with 1% formalde-
hyde for 15 minutes at room temperature. 125mM
Glycine was added to quench the reaction. Cell
pellets were resuspended in spheroplasting buffer
(1M Sorbitol, 5 mM β-mercaptoethanol, 50mM
Tris pH 7.5, 2 mg/ml zymolyase (AMS Bio cat

no: 120493-1); 1 mL of buffer per 20 mL of cell
culture) and incubated for 15 min. at room tem-
perature. The derived spheroplasts were treated
with 100U MNase (NEB cat no: M0247S) for 30-
40 min at 37°C. The reactions were stopped by the
addition of EDTA pH 8.0 (50 mM final conc.) and
EGTA pH 8.0 (50 mM final conc.). Samples were
then incubated with RNase A (Thermo Scientific,
EN0531, final conc. 0.2 mg/ml) at 42°C for 30 min
to digest RNA. The crosslinks were reversed by
adding SDS and proteinase K (Invitrogen cat no:
25530049, 1mg/ml final concentration) and incu-
bation at 65°C for 45 min. DNA was extracted
using the Monarch PCR & DNA cleanup kit.
Samples were resolved on 1% agarose gel to eval-
uate the digestion. Mononucleosome-sized bands
were extracted and libraries were constructed
from 10ng purified DNA using the Watchmaker
DNA Library Prep kit (cat no. 7K0102-096) from
Watchmaker Genomics according to the manu-
facturer’s instructions. Paired-end sequencing was
performed on AVITI (2x 75bp cycles). The data
processing was identical to that used for the
published MNase-seq samples.

4.2 BPReveal implementation
The BPReveal package is a suite of tools for flex-
ible training and interpretation of BPNet-derived
sequence-to-profile models[3, 9, 14]. The code
base is licensed under the GNU General Public
License (Version 2 or later) and is available at
https://github.com/mmtrebuchet/bpreveal. The
architecture is shown in Extended Data Figure 1.
The input is a one-hot encoded DNA sequence,
with typical input lengths around 3,000 bp. The
models consist of an initial convolutional layer,
followed by a stack of dilated convolutions that
exponentially increase in receptive field. There are
two outputs for each dataset: (1) the “profile” out-
put is a vector representing the log-probability
(i.e., logits) of finding a read at each position
in the output window; (2) the “counts” output
is a scalar representing the natural logarithm of
the total number of reads observed in that win-
dow. For brevity, the two outputs are referred
to as one “head” per dataset. The model can be
trained as a multi-task model on several exper-
iment types simultaneously, including but not
limited to ChIP-seq, ATAC-seq, MNase-seq, and
PRO-cap data.

BPReveal includes two significant expansions
from the original BPNet architecture that were
first implemented in ChromBPNet [14] and Pro-
CapNet [9]. First, instead of giving convolu-
tional filters beyond the input window zeros,
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as is often done in image processing, the input
length is increased to provide DNA sequence for
the entire receptive field [14]. Second, multiple
strands from one experiment can be combined
into one output. The log-counts output then com-
bines the total reads from both strands, and the
profile logits have the shape (output-length,
num-strands). This benefits the training of data
such as PRO-cap, where reads are often primarily
on one strand [9].

The loss is the same as it was in the original
BPNet:

losshead =

λhead

(
ln(nobs

head)− ln(npred
head)

)2

−γhead ln
(
Pmult(k⃗

obs
head|p⃗

pred
head)

) (1)

and
loss =

∑
head∈heads

losshead, (2)

where γhead and λhead are (user-assigned) weights
to the profile and counts components of the loss
for each head, ln Pmult(k⃗|p⃗) is the log-likelihood of
observing the outcome k⃗ (i.e., the observed exper-
imental reads) given the probability distribution p⃗
(i.e., the predicted logits from the model), and n is
the total number of reads observed (or predicted)
over an entire region.

4.3 Bias regression
BPReveal includes a tool based on
ChromBPNet[14] to remove experimental biases
from genomics data. The technique used in
ChromBPNet was based on the assumption that

Pbias,i ∗ Pbiology,i = Pexperiment,i, (3)

where Pbias,i represents the probability density at
base i due only to experimental biases, Pbiology,i

represents the probability density of the true bio-
logical profile at base i, and Pexperiment,i is the
probability density that would be measured by
an experiment. Since BPReveal and ChromBP-
Net models both use logits to represent the output
profiles, this becomes

ln(Pbias,i) + ln(Pbiology,i) = ln(Pexperiment,i) (4)

in the implementation.
BPReveal implements this strategy using two

BPNet-like models: One submodel, called the solo
model, is pre-trained to predict just the experi-
mental bias and its weights are frozen during the

training of the second submodel. The other sub-
model, called the residual model, has its output
logits added to the output logits of the frozen bias
model. These combined logits are then used in the
standard loss function, Equation 2.

A feature introduced by BPReveal is that the
bias is transformed to better match the experi-
mental data before its weights are frozen:

f(ln(Pbias,i)) + ln(Pbiology,i) = ln(Pexperiment,i),
(5)

where f is a simple function applied to all of
the outputs from the bias model. For all of the
models used in this paper, we used the function
f(x) = w1 ∗ sigmoid(w2x+w3) +w4. ChromBP-
Net, by comparison, does not transform the logits
from the bias model, and applies a pre-computed
scaling factor to the counts output. The full
architecture is shown in Extended Data Figure 1.

4.4 PISA
The calculation of PISA values Pi→j for a par-
ticular genomic coordinate j is implemented in
BPReveal in the following way. An input sequence
is selected such that the prediction for base j
will occur in the output of the model’s predicted
profile. deepSHAP is then used to partition the
logit at position j among each input base i that
is in the receptive field of base j. The references
used for deepSHAP are generated by shuffling
the input sequence; an option is provided to per-
form kmer-preserving shuffles using the ushuffle
algorithm[86].

In the following pseudocode, i and j refer
to genomic coordinates, and so shapValues[0]
refers to P(j−buf)→j . For ease of calculation, we
choose input sequences such that base j is at the
leftmost output of the model.
buf = (inputLength - outputLength) // 2
sequence = genome.fetch(

j - buf,
j + outputLength + buf)

target = model.outputs[headID][0, strandID]
explainer = shap.DeepExplainer(

(model.input , target),
ushuffle.shuffleOneHot)

shap = explainer.shap_values(sequence)

for i in range(j - buf, j + buf):
P[i + j, j] =

sum(shap[i - j + buf])

This value of the resulting array P holds, at
position (i,j), the value of Pi→j .

4.5 Synthetic bias calculation
The ChromBPNet approach to removing exper-
imental bias has a key limitation: it requires a
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model that has been trained to predict only bias,
which is not straightforward for MNase-seq data.
Therefore, a synthetic bias track for MNase-seq is
derived using PISA in the following way.

Consider an ideal dataset giving the exact
positions of nucleosomes by their 5′ and 3′ end
points, with no experimental bias. These data
could be used to train a two-strand model I; this
model would have outputs I5

′ and I3
′ . Consider

a nucleosome that spans from base j5
′ to j3

′ . If a
base i contributes to this nucleosome’s position,
then

P(I5
′
)i→j5′ = P(I3

′
)i→j3′ (6)

where P(I5′)i→j5′ represents the PISA contribu-
tion identified by I5

′ from the base at position i
(the x-axis in a PISA heatmap) onto the readout
at position j5

′ (the y-axis in the PISA heatmap).
Because base i’s role to causing the 5′ endpoint
to occur at base j5

′ is the same as its role in caus-
ing the 3′ endpoint to occur at base j3

′ , these two
contributions will be equal. (This assumption is
not strictly true in the case of a partial nucleo-
some, where a base might not alter the position
of a nucleosome dyad but would cause only one
observed endpoint to shift. We have found that
these instances are rare enough in the genome to
not affect our synthetic bias model.)

Now consider the case of real MNase-seq data
that has been used to train model M . In this
case, the experimental readout is not just based
on the nucleosome positions (which would have
been captured by the ideal model I), but also on
the enzyme’s sequence bias that determines the
observed endpoints. We refer to a model that cap-
tures this enzymatic bias as B. By Equation 5,
we have f(PB,j) ∗ PI,j = PM,j for each base j.
This introduces an asymmetry: P(M5′)i→j5′ still
includes base i’s role in causing a nucleosome to
have its 5′ endpoint at base j5

′ , but it also cap-
tures the role of base i in whether or not the
MNase enzyme would stop at base j5

′ due to bias.
By the nature of the MNase enzymatic bias, how-
ever, the role of base i will only have an effect on
the enzyme’s bias if it is close to j5

′ . However, j5′

must be about 150 bp away from j3
′ (since they

represent opposite ends of the same nucleosome),
and therefore if i ≈ j5

′ then P(M3′)i→j3′ will be
due to base i’s effect on nucleosome positioning
and will have a minimal contribution from bias.

Therefore, for a base i close to j5
′ :

P(M5′)i→j5′ = P(I5
′
)i→j5′ + P(B5′)i→j5′

P(M3′)i→j3′ = P(I3
′
)i→j3′ + 0

(7)

The use of addition here is justified by two points:
First, as established by ChromBPNet[14], attri-
bution scores show that addition of logits leads
to residual models (i.e., the models without bias)
with no contribution from bias motifs. We show in
section 2.4 that PISA plots of our MNase residual
model show insignificant bias-like density along
the diagonal and that our synthetic bias model
has density only along the diagonal. Second, since
PISA values are (approximate) Shapley values, an
effect that is due to a linear combination of two
processes will yield Shapley values that are a lin-
ear combination of the two corresponding causes:
for two models I and B,

P(I +B)i→j = P(I)i→j + P(B)i→j , (8)

where I and B are the ideal and bias models,
respectively. (and I +B = M by Equation 5)

By equations 6 and 7, if i ≈ j5
′ then

P(M5′)i→j5′ − P(M3′)i→j3′ = P(B5′)i→j5′ , (9)

which allows us to calculate P(B) from model
M , which was trained only on the experimental
MNase-seq.

In order to calculate the bias at position j5
′

we must know where j3
′ is. We would expect that

the offset ∆ between the two end points would be
on the order of 150 bp (the length of DNA in a
nucleosome). We determine the precise value of ∆
by comparing the match between P(M5′)i→j and
P(M3′)i→(j+∆) for a range of ∆ values. Since the
contribution of the bias model should be limited
to regions where i ≈ j, we exclude a 60 bp window
around the predicted outputs. In other words, we
align the PISA heatmaps of the two strands of
model M so that they match, except for the places
where enzymatic bias is strong. We determined an
optimal offset of 179 bp using this method, very
close to the average fragment length in our MNase
dataset.

By the efficiency property of Shapley values,
we can use the bias PISA values to reconstruct a
bias profile track:∑

i∈input

P(M)i→j = Mj −Mref,j (10)

where Mj is the output of the model at base
j, Mref,j is the output of the model on shuffled
copies of that same sequence, and input con-
tains all bases that are in the receptive field of
the model when it makes a prediction at base j.
Therefore, by summing the rows of the synthetic
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bias PISA heatmap, we can derive a profile of
MNase bias.

The essential process of shifting and subtract-
ing is given in the following pseudocode:
def getBias(P3, P5, strand):

# P3 and P5 are the PISA heatmaps for the 3'
# and 5' endpoints. Strand specifies which head
# the bias is to be calculated for.
# Move the 5' PISA heatmap to the left
# to align with the 3' heatmap , or vice versa.
if strand == "3'":

P5Shift = shiftLeft(P5, 179)
difference = P3 - P5Shift

if strand == "5'":
P3Shift = shiftRight(P3, 179)
difference = P5 - P3Shift

# The bias will come from near the diagonal , so
# zero PISA values more than 13 bp from the
# diagonal as we know they are not from bias.
maxJ, maxI = difference.shape
for i in range(maxI):

for j in range(maxJ):
if abs(i - j) > 13:

difference[j,i] = 0
# Use the efficiency property of Shapley
# values to generate a bias track.
biasLogits = sumRows(difference)
bias = softmax(biasLogits)
# Bias has shape (maxJ ,)
return bias

A full implementation can be found in
extractBiasBigwigs.py in the repository for
this paper.

To get a genome-wide profile of MNase bias,
we performed genome-wide PISA. In S. cere-
visiae, this takes a few days on three Nvidia A100
GPUs. For a significantly larger genome, perform-
ing PISA on the entire genome is impractical. But
since we train a model on the synthetic bias track,
it is only necessary to produce enough synthetic
bias data to train a model, and then that model
can predict the bias genome-wide.

With this synthetic bias track in hand, a
model can be trained on pure bias, which is then
used to train a residual model à la ChromBPNet,
thus learning the underlying biology that mixes
with the bias to give rise to the experimental
output.

4.6 Genetic algorithm
To design novel sequences with a desired profile,
we implemented a genetic algorithm (GA). This
GA designs small sets of mutations that can be
applied to an initial sequence in order to max-
imize a user-defined property of the prediction.
To design the mutation presented in Figure 6,
we allowed for three mutations and our fitness
function minimized the nucleosome density in a
window spanning chrII:431150-431250. Since we
expected to test our mutations in vivo by using
CRISPR/Cas9-mediated editing, we ran the GA
once for every possible PAM site in the region,
allowing mutations up to 50 bp downstream of

the PAM site. We disallowed mutations inside the
Pho5 gene body, on the Fkh2 motif, or on either
of the Pho4 motifs. Of the 51 runs (one for each
PAM site), we manually selected a design that
was predicted to remove the nucleosome on the
high-affinity Pho4 motif while leaving the other
nucleosomes undisturbed.
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8 Data availability
During review, all relevant data, includ-
ing models, predicted tracks, training data,
configuration files, importance score tracks,
motifs, and PISA values, are available at
https://stowersinstitute-my.sharepoint.com/:
u:/g/personal/cm2363_stowers_org/
Ea827-TL9INIuOoBlnMYTC8Bg2tqV3pz_
_i-Y8iwsTpTdA?e=HgC94M. After review,
these data will be moved to the Stowers Original
Data Repository at https://www.stowers.org/
research/publications/libpb-2546. All predicted
tracks, models, configuration files, importance
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score tracks, and motifs are available on Zenodo
at zenodo.org/records/15232217 Sequencing data
for the Pho5 site mutations will be made avail-
able as a GEO series after review; aligned tracks
are available in the files above.

9 Code availability
The BPReveal package is available at https:
//github.com/mmtrebuchet/bpreveal All source
code for this paper is available at https://github.
com/zeitlingerlab/bpreveal-manuscript.
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Extended Data Figure 1 ChromBPNet architecture. (blue) A typical BPNet-style model with two output heads.
The input to a BPReveal model is one-hot encoded DNA sequence. The core of the model is a stack of dilated convolutional
layers with skip connections (yellow trapezoids). (yellow) The architecture of a dilated convolutional layer with skip con-
nection. (red) The architecture of the transformation model, used to regress the predictions of a solo (i.e., bias) model to
better match experimental data. (bottom) A complete BPReveal model incorporating ChromBPNet-style bias correction.
The solo model is pre-trained on enzymatic bias, and then its weights are frozen. One transformation model is applied to
each output of the solo model, and the weights in the transformation model are trained on the experimental data. Finally,
the weights of both the solo and transformation model are frozen, and a new residual model is trained to learn the experi-
mental data.
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Table 1 Performance comparison for OSKN model We trained a BPReveal model using the same data as were
used in Avsec et al[3]. We assess the quality of a model’s predictions against an experimental dataset using two metrics.
The profile Jensen-Shannon divergence measures the similarity between the predicted and observed data at high
resolution, while the Spearman correlation of the counts measures the performance of the model over the entire output
window. Overall, BPReveal performs similarly to the previous state of the art in TF binding models.

Counts Spearman correlation (higher is better)
Training set Validation set

TF strand BPReveal Avsec ∆ BPReveal Avsec ∆
Oct4 positive 0.576 0.469 0.107 0.512 0.429 0.083
Oct4 negative 0.577 0.464 0.113 0.513 0.425 0.088
Sox2 positive 0.496 0.491 0.005 0.427 0.450 -0.024
Sox2 negative 0.500 0.488 0.012 0.424 0.443 -0.019
Klf4 positive 0.684 0.526 0.159 0.646 0.488 0.158
Klf4 negative 0.684 0.529 0.154 0.647 0.491 0.156

Nanog positive 0.616 0.661 -0.045 0.579 0.642 -0.064
Nanog negative 0.618 0.665 -0.047 0.580 0.648 -0.068

Profile Jensen-Shannon divergence (lower is better)
Training set Validation set

TF strand BPReveal Avsec ∆ BPReveal Avsec ∆
Oct4 positive 0.696 0.680 0.017 0.696 0.679 0.018
Oct4 negative 0.697 0.679 0.018 0.697 0.679 0.018
Sox2 positive 0.758 0.753 0.005 0.757 0.751 0.006
Sox2 negative 0.758 0.752 0.006 0.758 0.752 0.006
Klf4 positive 0.675 0.642 0.033 0.677 0.644 0.033
Klf4 negative 0.675 0.640 0.034 0.677 0.643 0.034

Nanog positive 0.676 0.675 0.001 0.676 0.675 0.001
Nanog negative 0.676 0.675 0.001 0.677 0.674 0.003
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Table 2 Performance comparison for ATAC-seq model. We trained a BPReveal model on the same data used in
Brennan et al[15], and assessed the two models’ accuracy using the same metrics as in Extended Data Table 1. Our
BPReveal model uses essentially the same architecture as ChromBPNet, and so the results are unsurprisingly very similar.

Counts Spearman correlation (higher is better)
Training set Validation set

BPReveal Brennan ∆ BPReveal Brennan ∆
0.753 0.759 -0.007 0.634 0.590 0.043

Profile Jensen-Shannon divergence (lower is better)
Training set Validation set

BPReveal Brennan ∆ BPReveal Brennan ∆
0.277 0.289 -0.012 0.291 0.308 -0.017
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Extended Data Figure 2 The CAckle motif contributes to Tn5 enzymatic bias, but can also create a depleted
footprint. We show heatmaps and metapeaks of experimental ATAC-seq data at CA repeats. (a) Mapping CA repeats by
sequence alone shows a pronounced spike in ATAC-seq reads at the site of the CA repeat. (left) A heatmap of ATAC-seq
profiles at CA repeats, ordered by total ATAC-seq reads in the region. (right) An average profile of the of the CA repeat
instances shows that many ATAC-seq reads occur at the site of the repeat. (b) By using CWM scanning[3] instead of just
sequence match, we see that CAckle motif instances can cause a local dip in ATAC-seq reads at some regions. A heatmap
of ATAC-seq profiles at mapped CAckle motifs (left) and an average profile over all mapped motif instances (right) show
a slight dip in ATAC-seq reads at the CAckle motif. For ease of visualization, a σ = 1 Gaussian filter has been applied
to both heatmaps. The orange traces in the average profiles are smoothed with a σ = 3 Gaussian filter applied to the
(unsmoothed) blue average profile traces.
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Extended Data Figure 3 Importance score comparison for ATAC bias correction. The ChromBPNet bias
correction strategy leads to a dramatic improvement in profile contribution scores, but does not improve counts contribution
scores. We show importance score tracks at the Sog locus for the combined model (which predicts the actual experimental
data, including bias), the solo model (which only predicts bias), and the residual model (which does not include bias). The
profile contribution scores for the combined and solo model both show a great deal of noise due to bias, whereas the bias-
corrected residual model shows much clearer peaks at the three Zelda motifs. The enzymatic bias encountered in ATAC-seq
has a much smaller effect on the total counts prediction, such that the combined model already clearly shows the three
Zelda motifs; the counts contribution scores from the residual model are the same as for the combined model in this case.
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Table 3 Performance data for BPReveal MNase model. These statistics are based on the 5′ endpoint predictions from
the model trained on the data from Begley et al[47]. (Metrics for the 3′ endpoint predictions (not shown) are within 1%
of the values in this table.)

Metric Training set Validation set
Profile Jensen-Shannon divergence (lower is better) 0.235 0.260

Profile Pearson (higher is better) 0.856 0.815
Counts Pearson (higher is better) 0.717 0.626

Counts Spearman (higher is better) 0.711 0.612

Table 4 Performance comparison for Routhier MNase model. A BPReveal model was trained on the same data as the
model in Routhier et al[25], and the BPReveal model performs as well or better than the previous state of the art. The
correlation metric for the Routhier model is base-by-base for an entire region of a chromosome, and therefore there is no
distinction between a profile and counts metric. Our metrics here are for the validation set.

Metric BPReveal Routhier
Counts Pearson (higher is better) 0.770 0.68
Profile Pearson (higher is better) 0.700 0.68

Extended Data Figure 4 Motifs identified by MNase bias model. Motifs identified from profile contribution
scores for our MNase bias model show a transition from AT-rich to CG-rich regions, consistent with the well-characterized
bias of the MNase enzyme. The six motifs shown here are the six most frequent seqlets identified by TF-MoDISco; none of
the 40 motifs it identified this model resembled a biologically-relevant motif.
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Extended Data Figure 5 Comparison of other bias-reduction techniques. In (a), we show several tracks that
explore potential bias-correction strategies. In each track, we show only 5′ endpoints of the dataset. Experimental MNase is
the MNase dataset from[47]. The experimental naked DNA sample is also from[47] and captures the behavior of the MNase
enzyme on naked DNA. The BPReveal combined prediction is a BPReveal model trained on the experimental MNase data,
including enzymatic bias. The BPReveal residual prediction is the bias-minimized result using the technique described in
this paper. The SeqOutBias output is the track generated by SeqOutBias when given the experimental MNase data. We
also trained a BPReveal model on the bias-minimized output from SeqOutBias, which is shown in the bottom track. In (b),
we use BAT plots to quantify the effectiveness of bias removal using three techniques. The uncorrected model is trained
on MNase data without any bias correction, the residual model uses the bias removal strategy described in this paper, the
naked solo model is trained only on the naked DNA experimental track, and the naked residual model is trained using
the naked DNA model as a bias model and performing a ChromBPNet-style correction to remove that bias. Finally, the
SeqOutBias model was trained on the bias-minimized output from SeqOutBias run on the experimental MNase data.
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Extended Data Figure 6 All MNase PISA plots. For completeness, we show PISA squid plots (left) and heatmaps
(center) for representative instances of the four motifs discussed in Figure 5 along with average PISA heatmaps generated
by injecting the motif in 100 random genomic regions (right). The Reb1 and Abf1 motifs both show a characteristic strong
positioning effect both in their actual genomic context and when injected into randomly-selected sequences from elsewhere
in the genome. The Rsc3 motif has a weaker effect than the two TFs, but still leads to nucleosome positioning. The polyA
motif has a more distributed role. While one stretch of A has been identified by our motif mapping tool, several other short
stretches of A repeats are also playing a role in nucleosome positioning at this locus. (bottom, left) We show the average
PISA heatmaps drawn from 100 randomly-selected genomic regions. All of the injection effects in the right column are
considerably stronger than the background level. (bottom, right) The effect of injecting the entire Widom 601 sequence
is comparable to the effect of a single polyA or Rsc3 motif injection, despite the Widom sequence being over an order of
magnitude longer and specifically designed to position nucleosomes in vitro[69].
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