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Abstract
Genomics data are now being generated at large quantities, of
exquisite high resolution and from single cells. They offer a
unique opportunity to develop powerful machine learning al-
gorithms, including neural networks, to uncover the rules of the
cis-regulatory code. However, current modeling assumptions
are often not based on state-of-the-art knowledge of the cis-
regulatory code from transcription, developmental genetics,
imaging, and structural studies. Here I aim to fill this gap by
giving a brief historical overview of the field, describing
common misconceptions and providing knowledge that might
help to guide computational approaches. I will describe the
principles and mechanisms involved in the combinatorial
requirement of transcription factor binding motifs for enhancer
activity, including the role of chromatin accessibility, re-
pressors, and low-affinity motifs in the cis-regulatory code.
Deciphering the cis-regulatory code would unlock an enor-
mous amount of regulatory information in the genome and
would allow us to locate cis-regulatory genetic variants
involved in development and disease.

Addresses
1 Stowers Institute for Medical Research, Kansas City, MO, USA
2 The University of Kansas Medical Center, Kansas City, KS, USA

Corresponding author: Zeitlinger, Julia (jbz@stowers.org)
Current Opinion in Systems Biology 2020, 23:22–31

This review comes from a themed issue on Gene Regulation (2020)

Edited by Ziv Bar-Joseph and Itamar Simon

For complete overview of the section, please refer the article collection -
Gene Regulation (2020)

Available online 4 September 2020

https://doi.org/10.1016/j.coisb.2020.08.002

2452-3100/© 2020 The Author(s). Published by Elsevier Ltd. This is an
open access ar ticle under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords
Transcription factors, Cis-regulatory code, Motif syntax, Chromatin
accessibility, Cooperative binding, Low-affinity binding motif, Enhancer
repression, Transcriptional regulatory networks.
Introduction
A fundamentally unresolved problem in biology is the
cis-regulatory code, also known as the genome’s ‘second
code’, which provides the means to read regulatory
Current Opinion in Systems Biology 2020, 23:22–31
information in the genome. The most abundant cis-
regulatory sequences are enhancers, which become
active under very specific conditions and “enhance” the
transcription of nearby genes. Because the activity of
enhancers is determined by their sequence and can be
reproduced outside their genomic context (e.g. in re-
porter assays), deciphering the cis-regulatory code of
their activation should be a tractable problem. It is also a

problem of great significance as over 80% of genetic
variants associated with complex traits and diseases in
humans are estimated to be found in cis-regulatory re-
gions [1]. If we could decipher the cis-regulatory code, it
would unlock an enormous amount of regulatory infor-
mation and would allow us to locate cis-regulatory mu-
tations and predict their effect on the organism.

The cis-regulatory code has been a long-standing prob-
lem and the focus of much research. Using genetics and
biochemistry, Jacob and Monod discovered in the 1960s

that genes in bacteria are regulated by DNA sequences
found nearby on the same DNA molecule (in cis) [2,3].
With the advent of molecular biology in the 1970s and
1980s, it became possible to cut and paste sequences
into different genomic contexts. This showed that an
enhancer can function autonomously outside its normal
genomic environment, independent of its orientation
and exact distance to the gene [4]. Furthermore, it was
discovered that enhancers contain short sequence
motifs (w6e12 bases) that are recognized by tran-
scription factors (TFs) [5]. Because TFs are often

responsive to extracellular signals or are transcriptionally
regulated in a spatial and temporal fashion during em-
bryonic development, they provide the means for the
cell to regulate when enhancers and the associated
genes become active [6] (Figure 1a).

How exactly TFs regulate the activity of specific en-
hancers remains elusive. Developmental enhancers
typically contain motifs for multiple TFs [7,8] and it is
the specific combination of motifs that gives them their
unique properties [9,10]. Experimental dissections of

individual enhancer sequences suggest that enhancer
activity may depend on the motif arrangement, also
known as motif syntax [11,12]. Syntax includes the
overall motif composition, motif order, motif orientation,
and the spacing between the motifs. Early studies on
the interferon-beta enhancer suggested very strict
syntax rules, where multiple TFs assemble as an
www.sciencedirect.com
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Figure 1

The cis-regulatory code defines how DNA sequence regulates enhancer activity. (a) TFs are regulated transcriptionally and by extracellular signals
such that each cell type contains a unique set of active TFs. Dependent on the specific TF combination, different sets of enhancers become active in each
cell type. (b) The cis-regulatory DNA sequence contains TF motifs in specific arrangements (syntax). Dependent on syntax, the motifs are bound by TFs
cooperatively. TFs then recruit co-activators or co-repressors, which regulate the activity of the enhancer.
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‘enhanceosome’ [13]. However, studies on other en-
hancers suggested a very flexible syntax (‘billboard
model’) [14]. Thus, individual enhancer studies did not

reveal clear rules that could be applied genome-wide.
Until today, we cannot predict the regulatory activity
of enhancers from sequence alone.

With the advent of genomics technology, finding the
rules of the cis-regulatory code seemed to be within
reach [9,15]. Co-regulated genes pointed to the exis-
tence of enhancers with similar activity [16], chromatin
immunoprecipitation (ChIP) technology enabled the
identification of genomic regions bound by a TF in vivo
[17e19], and the eventual development of large-scale

reporter assays allowed the identification of large
numbers of sequences with similar enhancer activity in a
specific cell type [20]. Given large numbers of en-
hancers, it was reasonable to assume that the rules
under which specific combinations and arrangements of
motifs leading to enhancer activation could be identi-
fied. However, despite extensive experimental and
computational efforts in the 2000s, no clear rules of the
cis-regulatory code emerged [21,22]. The available data
likely lacked the depth and resolution required to map
www.sciencedirect.com
with certainty the exact sequence motifs bound by TFs
in vivo.

Ironically, with the development of increasingly power-
ful genomics technologies and computational methods
in the last decade, efforts into deciphering the cis-
regulatory code have declined rather than increased.
Rather than focusing on the relationship between
sequence and gene regulation, research efforts have
increasingly focused on chromatin states, RNA, and 3D
organization of the nucleus. Thus, the scientific ques-
tions evolved with the new opportunities that genomics
technology offered and diverted from the fundamental
problem of the cis-regulatory code, which became to be

seen as either solved in principle or intractable.

Now we find ourselves in an era with genomics data of
large quantities [23], of exquisite high resolution
[24,25] and from single cells [26,27], all of which sub-
stantially improve the analysis of cis-regulatory se-
quences. Furthermore, powerful machine learning
algorithms, including neural networks, have been
developed for analyzing DNA sequences and predicting
many associated genomic measurements [28e32]. This
Current Opinion in Systems Biology 2020, 23:22–31
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allowed the discovery of genome-wide syntax for the
first time and revealed that syntax is often soft: two
motifs may enhance TF binding when found in a
preferred distance and do not have to be spaced at an
exact base distance [33].

Despite the breakthrough tools that are now becoming
available, the cis-regulatory code is not the primary focus

of most current studies. Owing to the diversion of the
genomics field into other aspects of gene regulation,
there is no longer a clear consensus on what we know
about the cis-regulatory code from transcription,
developmental genetics, imaging, structural studies, and
computational biology. This is problematic because
computational analyses of cis-regulatory sequences, for
example, as part of transcriptional regulatory networks,
often use overly simplified or unrealistic assumptions for
how cis-regulatory information is encoded in the DNA.
Here, I will outline some of these common mis-

conceptions, point to the evidence that argues against
them and describe a path toward more realistic
assumptions.

Myth 1: If we understand the cis-regulatory code in
one cell type, we can predict enhancer activity in all
cell types
A current emphasis in computational genomics is to
learn patterns in some cell types and then impute these
patterns in other cell types where experimental data are
limited or not available [34,35]. Although this can work
well, there is often an unquestioned expectation that
this is a solvable problem. Similarly, it is sometimes
assumed that a complete map of all TF binding motifs

and their target genes can be experimentally deter-
mined. In both cases, the underlying assumption is that
the cis-regulatory code is universally applicable and that
by studying a few cell types, other cell types can be
inferred. After all, the biochemical and biophysical
principles underlying TF binding and gene activation
are shared among all cell types. However, unlike the
genomic code for proteins, the cis-regulatory code is not
a universal code. Cell types use vastly different TF
motifs and syntax rules; even a few deviating details can
make it impossible to accurately predict which cis-

regulatory sequences are read out by a cell type. At
the current state of knowledge, it might be more useful
to think of each cell type having its own cis-regulatory
code. Once we understand the code for a number of
cell types in great detail, we might be able to derive
general principles and determine the minimal set of
experiments required to impute cis-regulatory code for
new cell types.

Reality: The cis-regulatory code is highly complex and
specific for each cellular state
Cell types read out very different sets of cis-regulatory
sequences to have a unique gene expression program
Current Opinion in Systems Biology 2020, 23:22–31
and respond appropriately to the environment. Like-
wise, in the developing embryo, cells use different cis-
regulatory sequences across time and space to develop
along specified developmental trajectories and acquire
specific cell identities [15,22]. To accomplish this, each
cellular state has a unique combination of TFs, each
with their specific rules of interactions and response to
extracellular signals [6,36] (Figure 1a). Mammalian ge-

nomes encode over 1000 TFs, and TFs may bind with
different sequence specificities and follow different
syntax rules depending on their partner TF [37e40].
This large combinatorial complexity allows a vast
number of possibilities by which cis-regulatory se-
quences are accessed in the genome and lead to
enhancer activity. Some regions might only be active
under very specific conditions, for example, in a partic-
ular cell type at a certain time point during develop-
ment, and their genomic coordinates may overlap with
other cis-regulatory regions [41]. Learning this cis-

regulatory repertoire will require a large number of
high-quality experimental data in vitro and in vivo, as well
as sophisticated computational tools that can learn the
interaction rules that underlie the cis-regulatory code.

Myth 2: Enhancers are regulated promiscuously by
many TFs
Based on ChIP-seq and imaging data, TF binding occurs
very promiscuously at hundreds of thousands of regions
in the genome [42,43]. Thus, enhancers, especially
when active, appear to be bound by a large number of
TFs. This can be interpreted as enhancers having a large
number of TF inputs, each with small contributions to
gene activation [42]. However, ChIP-seq signal can be

unspecific or nonfunctional. Furthermore, genetics
studies show that deletion of a single TF or mutating an
individual DNA binding motif often has very large ef-
fects on gene expression (Figure 2a). Thus, enhancers
are regulated cooperatively by a small number of TFs,
rather than additively by a large number of TFs.

Reality: TFs are required in a combinatorial manner for
enhancer activation
Genetics has shown that mutations in TF genes produce
specific and striking phenotypes, with drastically altered
gene expression patterns [44]. Likewise, mutating in-
dividual binding motifs within an enhancer may abolish

the enhancer’s activity [45e47]. This is often true for
multiple motifs within enhancers, suggesting that their
function is coupled via AND logic (Figure 2a) [48]. To
achieve such coupling, the best understood mechanism
is a composite motif, that is, two motifs to which two
TFs bind cooperatively through proteineprotein in-
teractions (Figure 2b) [21,37,49,50]. This often requires
a strict spacing between the two motifs or may involve
preferred soft spacing at helical distances (Figure 2c)
[33]. TF cooperativity at preferred distances may also
occur with weak or no proteineprotein interactions
www.sciencedirect.com
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Figure 2

TF motifs often function together in an AND logic. (a) Mutating different motifs in an enhancer can each lead to a loss of enhancer activity. Such AND
logic between motifs can occur through (b) cooperative TF binding to composite motifs, (c) cooperative binding to motifs spaced with helical periodicity
(~10 bp x N), (d) one TF opening chromatin such that another TF can bind (assisted loading), or (e) synergistic co-activator function. (f) The resulting
enhancer activity follows a sigmoidal curve with increasing concentrations of a TF.
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between TFs [37,39]. For example, a TF motif may not
be able to access a motif in chromatin unless a so-called
pioneer TF binds nearby (<w150 bp) and opens
chromatin through nucleosome remodeling (Figure 2d)
[33,51]. Finally, two TFs may also act synergistically
downstream of TF binding, for example, by recruiting

different co-factors that synergize in target gene acti-
vation (Figure 2e) [52]. Consistent with these mecha-
nisms, the activation of developmental enhancers
typically follows a sigmoidal curve and may show ultra-
sensitivity in response to increasing concentrations of
TFs (Figure 2f) [53e55]. This allows genes to be
expressed in relatively sharp oneoff patterns and makes
the cis-regulatory code more specific.

Myth 3: Understanding the cis-regulatory code is a
matter of mapping the direct TF binding sites
The recognition of DNA sequence motifs by TFs is the
basis for the cis-regulatory code. These interactions

have been studied by a variety of experimental tech-
niques in vitro and are increasingly performed at high-
throughput [37]. From such in vitro experiments,
simple computational models such as a position weight
matrix can be derived and used to predict sequence
matches in the genome. Owing to the strong biophysical
basis, identifying bona fide TF binding sites is typically
the first step when analyzing enhancers. For example,
Eric Davidson, who pioneered the study of transcrip-
tional regulatory networks during sea urchin develop-
ment, saw three steps in the identification of the cis-

regulatory code: (1) identify TF binding sites, (2)
experimentally determine their individual function (e.g.
activation, repression, signal-induced), and (3) identify
the rules by which the TF binding sites function
together as Boolean inputeoutput devices [56].
www.sciencedirect.com
However, identifying TF binding sites based on their
in vitro properties or their statistical significance relies
on arbitrary thresholds that do not reflect how TFs bind
in vivo. To fully understand the cis-regulatory code,
binding sites should not be modeled separately from the
cooperative interactions or downstream functions they

mediate.

Reality: TF binding and function are inherently
combinatorial
TF binding in vivo depends on other TFs [36,38,57,58].
For example, TFs may cooperate in binding with other
TFs through physical interactions, or pioneer TFs may
help the binding of other TFs by making the binding
site accessible in chromatin [33,51]. Furthermore, TFs
may function either as an activator or repressor depen-
dent on nearby motifs [46,59]. Therefore, if we want to
systematically decipher the cis-regulatory code from
sequence, potential TF binding sites should be modeled

directly in their cis-regulatory context and not selected
based on a fixed in vitro binding threshold before
modeling. Convolutional neural networks are ideally
suited for this because they model entire cis-regulatory
sequences, including their higher-order motif combi-
nations and syntax, without defining any features a priori
[28e33]. They have therefore emerged as powerful
tools for discovering elements of the cis-regulatory code.

Myth 4: TF binding is secondary to chromatin
regulation
It has been known since the first genome-wide ChIP
experiments that TF binding in vivo does not correlate
well with the presence of consensus binding motifs.

However, TF binding is vastly improved when taking
chromatin accessibility into account [35,60]. This leads
Current Opinion in Systems Biology 2020, 23:22–31
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to the impression that chromatin accessibility is regu-
lated before the binding of most TFs. Although this
view acknowledges that pioneer TFs are important in
creating the chromatin accessibility in a sequence-
dependent manner, it prioritizes studying the regula-
tion of chromatin states (histone modifications, 3D or-
ganization, etc.) and how they are established and
maintained over time. Long-range chromatin repression

mechanisms, such as those establishing different types
of heterochromatin, indeed play an important role in
keeping certain regions in the genome mostly inacces-
sible. However, the dynamic chromatin accessibility of
enhancers during development is, for the most part,
determined by TFs binding to cis-regulatory sequences
and not the other way around [61e63].

Reality: Chromatin accessibility is determined by cis-
regulatory sequences
Although pioneer TFs play an important role in making
enhancer regions first accessible, chromatin accessibility
is a result of the combined action of TFs (Figure 3) [64].
Pioneer TFs often work together with other TFs to in-

crease chromatin accessibility [39,65,66] and are
themselves required for the enhancer’s activity [67,68].
When the enhancer is active, the central nucleosome is
evicted [69e71] and chromatin accessibility is further
increased [72]. Thus, chromatin accessibility appears to
be the result of the interplay of multiple TFs and is
likely an important mechanism by which these TFs
function combinatorially as part of the cis-regulatory
code. By using chromatin accessibility as prior proba-
bility for TF binding, we miss the opportunity to
discover some of the pioneer TFs that mediate this

accessibility.

Myth 5: ChIP-seq binding data can be classified as
binary events
To simplify models of gene regulation, ChIP-seq data are
often classified as binary binding events. However,
identifying a set of bound regions based on a chosen
threshold has implications. It not only determines the
level of unspecific binding or noise that is included in
the data set, but also affects the functional contents of
these regions. TF binding is higher at functional en-
hancers [73] and even higher at active enhancers [72]
where the chromatin accessibility is highest (Figure 3).

Therefore, dependent on the chosen threshold, the cis-
regulatory context, including the presence of other TF
binding motifs, is likely to be different.

Reality: ChIP-seq binding at enhancers is a quantitative
readout
ChIP-seq data show a continuum of binding levels. To
understand the various components, ChIP-seq data can
be compared with high-resolution ChIP-exo/nexus data,
in which the TF binding signal has distinct footprints
over motifs. Notably, ChIP-seq data contain higher
Current Opinion in Systems Biology 2020, 23:22–31
levels of experimental background noise compared with
ChIP-exo/nexus data, suggesting that some signal in
ChIP-seq data is not specific for the measured TF
[24,25]. Even in ChIP-exo/nexus data, small portions of
signal are randomly distributed, most often across re-
gions of highly accessible chromatin. This suggests that
TFs may also bind nonspecifically to DNA. This inter-
pretation is consistent with imaging studies showing

that TFs may search and bind to many genomic regions
very briefly (<1 s) before binding to a region with
prolonged dwell time (w10 s), presumably because of a
high-affinity binding motif [74]. The TF’s dwell time
may however not only depend on the motif ’s binding
affinity, but also on the presence/state of the nucleo-
some or the presence of partner TFs [74,75]. Even with
short dwell times, a TF might have a high fractional
occupancy in ChIP-seq data if the local TF concentra-
tion is high and the TF can quickly rebind without long
search times [76]. Such locally high TF concentrations

have been observed at enhancers by imaging and
described as condensates or hubs [77,78]. Finally, it is
important to keep in mind that ChIP-seq data represent
cell population averages. For example, if certain TF
binding events only occur in a fraction of cells, they will
have a reduced ChIP-seq signal overall.

Myth 6: Transcription factors mainly function as
activators in mammalian cells
Although the lac and lambda repressors were the first
sequence-specific TFs that were identified and exten-
sively characterized [79], the role of repressors in
enhancer activation is poorly studied in mammalian
systems. This may be because the first mammalian

enhancer, derived from SV40 and characterized by
Walter Schaffner [4], did not involve relief of repression.
Instead, it was proposed that nucleosomes repress en-
hancers in the absence of activation [79]. However, in
model organisms such as Drosophila, sea urchin, or
yeast, genetics has shown that repressors are essential
for gene regulation [6,44,80]. Mammalian systems have
long lacked such extensive genetic characterization, but
when in-depth analyses were performed for mouse
development the importance of repressors has been
clearly documented [81]. Recent genomics analyses

have also confirmed that cis-regulatory elements
frequently result in repressive activity [82]. This sug-
gests that repressors are common throughout the animal
kingdom and should be incorporated into models of
gene expression in mammalian systems.

Reality: Transcription factors frequently repress
enhancers
The most detailed mechanistic understanding of re-
pressors comes from pioneering work in Drosophila,
where precise spatiotemporal gene expression patterns
during development require a combination of activating
and repressing TFs. A large number of TFs act as
www.sciencedirect.com
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Figure 3

Chromatin accessibility is a readout of multiple TFs. In the absence of appropriate TFs, nucleosomes maintain DNA in an inaccessible state (left).
Pioneer TFs can bind their motifs in the presence of chromatin and make the region accessible (primed or poised enhancer, middle). The chromatin
accessibility may be further increased by TFs both during the pioneering phase and during enhancer activation.
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dedicated repressors (Figure 4a) and thus are generally
repressive when bound to an enhancer [6,8,46]. Other
TFs are dual TFs that can act as both an activator and
repressor (Figure 4b and c). For example, binding sites
for Drosophila NFkB are essential for either activating or

repressing an enhancer [6]. It does so by acting intrin-
sically as a weak activator, but strongly promotes
repression by helping the binding of a repressor to
Figure 4

Mechanisms by which repressors (a–c) or low-affinity TF binding motifs
repressors bind to their motifs, they counteract the activity of TFs bound nea
repressing effect when they recruit a repressor to a nearby repressor motif. L
higher TF concentration to mediate enhancer activation, (e) may discriminate
partner TF for binding.

www.sciencedirect.com
specific sequences nearby [83]. A repressor typically
serves to repress and fine-tune the activity of enhancers
by counteracting the effect of activating TFs that are
bound nearby, for example, through histone deacetyla-
tion [53,59,72]. Repressed enhancers are accessible in

chromatin and show a poised/weakly active histone
modification signature, a signature that is very common
during mammalian development [72,82].
(d–f) regulate enhancer activity and specificity. (a) When dedicated
rby. (b) Dual TFs may be weakly activating by themselves, but (c) have a
ow-affinity motifs (d) are likely bound with shorter dwell times and require
between closely related TF family members, or (f) may be dependent on a
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Myth 7: Low-affinity binding motifs do not have a
strong effect on enhancer function
Binding sequences that deviate from the consensus
binding motif and are bound in vitro at low affinity are
often omitted from analyses. They occur with high fre-
quency by chance in genomic sequences and are
therefore hard to identify as functional motifs in vivo.
However, experimental evidence suggests that we miss
crucial cis-regulatory information if we ignore low-
affinity motifs [12,83,84]. It is therefore important to
increase efforts into identifying and characterizing the

effects of low-affinity motifs in cis-regulatory regions,
especially with the emergence of neural networks which
can detect low-affinity motifs [33]. Similarly, sequence
information beyond motifs, such as DNA shape, subtle
base preferences in motif flanks, and dinucleotide re-
peats may contribute to TF binding specificity [21].

Reality: Low-affinity binding motifs are critical for the
specificity of enhancers in vivo
Systematic analysis of synthetic enhancer constructs in
Ciona has shown that low-affinity motifs are critical for
producing in vivo expression patterns that are highly
tissue-specific [12]. Several mechanisms could explain

the requirement of low-affinity motifs for enhancer
specificity. First, low-affinity motifs resulting in shorter
TF dwell times may nevertheless be bound when the
local TF concentration is high (Figure 4d). The shorter
dwell times may even be advantageous by making the
enhancer more tunable [76]. Second, some TF families,
such as homeodomain TFs, bind very similar binding
motifs, thus a low-affinity motif can render an enhancer
more specific for a particular TF (Figure 4e) [84,85].
Finally, low-affinity motifs may make the binding of a TF
dependent on its partner TF if high-affinity motifs are

constitutively bound (Figure 4f) [83]. Thus, low-affinity
motifs might be a common mechanism by which
combinatorial TF requirements are embedded into the
cis-regulatory code.
Conclusions
There is still much to be learned about the cis-
regulatory code. We are only beginning to understand
the mechanisms of how TFs function combinatorially in
enhancer activation and how subtle motif syntax and
low-affinity motifs influence this process. So far, there
are too few examples to derive general principles.
However, we likely have sufficient information to make
reasonable assumptions when developing computational
models. The goal is go beyond the identification of
relevant motifs and to learn the rules of syntax and
combinatorial interactions that predict enhancer activity

from raw sequence. Neural networks are ideally suited
for this because they can learn highly complex sequence
patterns with unprecedented predictive power, allowing
motifs to be directly modeled in their cis-regulatory
context. Moreover, interpretation tools have recently
Current Opinion in Systems Biology 2020, 23:22–31
been developed to extract the relevant sequence infor-
mation, including motifs and their rules of syntax
[28,29,33]. Combined with cutting-edge genomics
technology and large-scale data sets, these approaches
promise to revolutionize our ability to predict the
function of cis-regulatory sequences in any genome and
provide us with unprecedented opportunities to study
genetic cis-regulatory variation during development and

disease.
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