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ABSTRACT

Motivation: Chromatin immunoprecipitation coupled to next-gener-

ation sequencing (ChIP-seq) is widely used to study the in vivo binding

sites of transcription factors (TFs) and their regulatory targets. Recent

improvements to ChIP-seq, such as increased resolution, promise

deeper insights into transcriptional regulation, yet require novel com-

putational tools to fully leverage their advantages.

Results: To this aim, we have developed peakzilla, which can iden-

tify closely spaced TF binding sites at high resolution (i.e. resolves

individual binding sites even if spaced closely), as we demonstrate

using semisynthetic datasets, performing ChIP-seq for the TF Twist

in Drosophila embryos with different experimental fragment sizes, and

analyzing ChIP-exo datasets. We show that the increased resolution

reached by peakzilla is highly relevant, as closely spaced Twist binding

sites are strongly enriched in transcriptional enhancers, suggesting a

signature to discriminate functional from abundant non-functional or

neutral TF binding. Peakzilla is easy to use, as it estimates all the

necessary parameters from the data and is freely available.

Availability and implementation: The peakzilla program is available

from https://github.com/steinmann/peakzilla or http://www.starklab.

org/data/peakzilla/.

Contact: stark@starklab.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene expression is mainly regulated at the transcriptional level
and achieved through the binding of transcription factors (TFs)
to genomic regulatory regions called promoters and enhancers.

Chromatin immunoprecipitation followed by sequencing (ChIP-
seq) is extensively used to determine transcription factor binding
sites (TFBSs) genome-wide (Johnson et al., 2007; Robertson

et al., 2007). Compared with ChIP-chip (Iyer et al., 2001; Ren
et al., 2000), ChIP-seq has dramatically improved the resolution
of the identified TFBSs (from hundreds to only tens of

nucleotides). A recent refinement of ChIP-seq, the ChIP-exo

method (Rhee and Pugh, 2011), further increases the resolution

of ChIP-seq experiments, theoretically to single nucleotides.
The specific features and strategies of TF ChIP-seq data ana-

lysis have been well described by several reviews (e.g. Pepke

et al., 2009) and protocols (e.g. Bardet et al., 2012). Briefly, as

typically only one of both ends of the immunoprecipitated DNA

fragments is sequenced, the sequencing reads (or tags) result in a

bimodal distribution that is characteristic for true TFBSs

(Fig. 1a). This distribution is typically used to estimate the aver-

age size of the fragments, which subsequently allows the predic-

tion of TFBSs across the genome.
Many computational tools have been developed and are suc-

cessfully used to predict such binding events (Wilbanks and

Facciotti, 2010). However, in our experience, these tools are

not optimized to take advantage of recent methodological im-

provements, which comprise paired-end sequencing, high

sequencing depth (e.g. on Illumina HiSeq systems) and—most

importantly—an increase in experimental resolution, both of

conventional ChIP-seq and of ChIP-exo. Available tools typic-

ally merge closely spaced read-density peaks into large regions,

which is preferable when analyzing certain chromatin features

that mark extended regions (e.g. histone modifications), but

means that the ability to distinguish (i.e. resolve) individual clo-

sely spaced TFBSs is lost. High resolution and precision [i.e. the

correct prediction of the TFBSs’ exact locations as measured for

example as the distance from the inferred TFBS (the reported

peak summit) to the TF’s sequence motif] are crucial when deter-

mining individual TFBSs (e.g. Guo et al., 2012), as promoter and

enhancer regions often consist of multiple TFBSs for the same

TF (homotypic TFBSs clusters) (Gotea et al., 2010; He et al.,

2011; Lifanov et al., 2003) or different TFs (Berman et al., 2002;

Schroeder et al., 2004). Thus, to fully leverage current ChIP

methodologies toward understanding the structure and function

of enhancers, the ability to determine multiple closely spaced

TFBSs is critical. To meet this need, we developed a new com-

putational tool, peakzilla, which fully exploits the bimodal dis-

tribution of sequence reads characteristic of true TF binding

events, to identify closely adjacent TFBSs with high resolution

and precision. Peakzilla is not meant for the identification of

broad enriched regions (e.g. histone marks) for which we recom-

mend using MACS or similar programs.
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We evaluate peakzilla by comparing it with three widely used

peak-finders of the first generation such as MACS (Zhang et al.,

2008), QuEST (Valouev et al., 2008) and cisGenome (Ji et al.,

2008), as well as four methods developed more recently for the

detection of high-resolution peaks such as spp (Kharchenko

et al., 2008), SISSRs (Jothi et al., 2008), GPS (Guo et al.,

2010) and PeakRanger (Feng et al., 2011). Peakzilla shows

superior resolution and precision on conventional ChIP-seq

datasets from Saccharomyces cerevisiae (Zheng et al., 2010),

Caenorhabditis elegans (Zhong et al., 2010), Drosophila melano-

gaster (He et al., 2011), mouse (Schmidt et al., 2010) and human

(Kasowski et al., 2010; Cuddapah et al., 2009) and on recent

ChIP-exo datasets (Rhee and Pugh, 2011). We also specifically

test the resolution limits of each method using semisynthetic

ChIP-seq datasets and show experimentally that peakzilla fully

reflects increased experimental resolution by performing ChIP-

seq experiments for Twist in D.melanogaster at normal, medium

and high resolution. These results suggest that peakzilla is best

suited for the identification of TFBSs with recent ChIP methods.

2 PEAKZILLA ALGORITHM

Peakzilla uses the bimodal distribution of the reads (Fig. 1a) not

only to estimate the fragment length but also to weight the read

counts during peak calling and to score the candidate TFBSs.

This has two important advantages: first, it enables peakzilla to

more clearly discriminate between reads from adjacent TFBSs,

leading to a substantial increase in resolution compared with

treating reads irrespective of their directionality. Second, it

avoids false positives that originate from artifacts during library

Fig. 1. Peakzilla algorithm. (a) Overview of the ChIP-seq pipeline. TFBSs display a characteristic bimodal distribution of the positive and negative

strand reads. (b) Example of a true-positive (Peak A) and false-positive (Peak B) peak in the Twist dataset in D.melanogaster (genomic coordinates

chr2L:12420984-12423043 and chrX: 9899747-9905926, respectively). Peak B, unlike peak A, does not exhibit the characteristic double distribution of

reads on the positive and negative strands. (c) Read distribution model using two Gaussian distributions. (d) Peak score. While both peaks A and B from

(b) show the same enrichment of read count over control, the score for peak B is penalized by the distribution score, a multiplicative factor [0 . . . 1], as it

does not fit to the specific double distribution of the model in (c). (e) Fragment diversity or data non-redundancy. Y-axis denotes the number of genomic

positions that contain 90% of the reads that contribute to a peak. Peaks with a distribution score of 0 are more redundant, whereas peaks with a

distribution score of 1 are more diverse. The same plot for all peaks in shown in Supplementary Figure S2 (f) Fraction of peaks with a distribution score

of 0 or 1 that contain the corresponding TF motif
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preparation or sequencing, without the need to collapse or down-
weight reads that map to identical genomic positions (Fig. 1b
and Supplementary Fig. S1). This is especially important when

working with high sequence coverage, as obtained for small gen-
omes (e.g. yeast, flies or nematodes) and with modern next gen-
eration sequencers (Chen et al., 2012). Finally, when using

peakzilla on paired-end ChIP-seq data, the estimated fragment
size is directly averaged from the mapped reads.

Peakzilla first scans the genome for candidate TFBSs that
show high coverage in sequencing reads of the immunoprecipi-
tated (IP) sample compared with the control sample (note that

the control sample is optional, allowing peakzilla to be used with
ChIP-exo). It then scores the candidates by the normalized read
count of IP sample minus the control sample if available. To

discriminate between artifacts and true binding events in en-
riched regions, each candidate TFBS score is further weighted

by a distribution score that estimates how well the observed dis-
tribution of the reads in the peak region fits to a model for the
bimodal read distribution (Fig. 1c and d). Indeed, further ana-

lyses suggest that candidates who are penalized using this distri-
bution score are likely false because they contain substantially
less diverse sequence reads (Fig. 1e and Supplementary Fig. S2).

Their high read densities stem from only a few highly duplicated
sequences, which are likely amplification artifacts, and are sig-

nificantly less enriched in the corresponding TF motif (Fig. 1f).
The method is illustrated in the method section and in
Supplementary Figure S3.

3 RESULTS

3.1 Overall performance

To evaluate peakzilla, we compared it with other methods using
diverse ChIP-seq datasets from S.cerevisiae, C.elegans,
D.melanogaster, mouse and human. Although the number of

peaks called by the different methods is highly dependent on
the thresholds and parameters used, the respective genomic

regions overlap well (Supplementary Fig. S4), demonstrating
the maturity of available tools for ‘peak calling’. For example,
all known Twist enhancers are identified by all methods, except

for four and three enhancers that are not found by QuEST and
GPS, respectively (Supplementary Fig. S5). For most TFs tested,
of all peaks identified by only one of the methods, those found

exclusively by peakzilla are significantly more highly enriched in
TF motif occurrences (Fig. 2a and Supplementary Fig. S6). They

also have higher fold enrichments of ChIP over input than peaks
found exclusively by any of the other methods (Fig. 2b and
Supplementary Fig. S6).

3.2 High precision of peakzilla peaks

When identifying TFBSs at high resolution, the correct predic-
tion of the precise TFBSs’ location is important and critical for
subsequent analyses of sequence features of TF binding. We

found that most methods, including peakzilla, place the summits
of the peak regions closely to the nearest motif occurrence

(Supplementary Fig. S7, which also shows that the fraction of
peaks that contain a motif is comparable across methods),
arguing that the high resolution of peakzilla’s peak (see below)

does not come at the expense of precision.

3.3 Multiple peak regions function as transcriptional

enhancers

The main strength of peakzilla is its ability to find peaks at high

resolution. As the locations of sequencing reads that originate

from a single TFBS are limited by the fragment size used for

library preparation, we adjust our search window for counting

and scoring sequence reads accordingly, and report peak regions

as the average fragment size centered on the summit position.

This is different from the large peak regions reported by MACS

and to a lesser extent QuEST, CisGenome and PeakRanger (and

from reporting only the summit positions as do SISSRs and spp;

Fig. 3a), and is one of the key features that allow peakzilla to

resolve closely spaced peaks up to distances that correspond to

half the fragment size. This is the highest resolution that can

easily be obtained without losing the ability to uniquely assign

reads to individual TFBSs. A further gain in resolution would

require the deconvolution of overlapping read distributions by

model fitting, a computationally intensive approach used, for

example, by GPS (Guo et al., 2010).

Peakzilla splits a substantial number of MACS peaks (e.g.

22% for Twist) into several peaks, each constituting a putative

TFBS (Supplementary Fig. S8). Indeed, as expected for

independent TFBSs, both the split peaks that correspond to

the MACS summits (major peaks) and the minor peaks were

Fig. 2. High precision of peakzilla peaks. Analyses performed on the

Twist dataset in D.melanogaster. (a) Enrichment of motifs in differential

peaks between peakzilla and other methods. Bionomial P-values of

enrichment over control and number of differential peaks with a motif

are shown on top of the bars. See Supplementary Figure S6 for other

datasets and species. (b) Fold enrichment values of differential peaks and

associated Wilcoxon P-values (NA: no peak available)
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significantly enriched for the Twist motif (Fig. 3b). Thus, many

split MACS peaks may represent homotypic clusters of Twist

binding sites. In addition, minor peaks frequently contained

motifs for the TFs Snail and Dorsal, which are known to co-

operate with Twist and might have been co-precipitated after

cross-linking (Fig. 3b).

Most importantly, MACS peaks split by peakzilla appear to

be more often functional than MACS peaks that are not split

(one-to-one peaks) and control regions (Fig. 3c): TF binding to

split peaks is more highly conserved in other Drosophila species

(He et al., 2011) and they are significantly more enriched for

known Twist or mesodermal enhancers than one-to-one peaks

one or controls (Fig.3d and e). This is highly relevant as the large

fraction of TFBS that are identified by ChIP approaches yet do

not appear to be functioning as transcriptional enhancers (‘neu-

tral binding’ (Li et al., 2008; Kvon et al., 2012)) have been a

major obstacle to studying the direct regulatory targets of TFs

and to understanding the true number and density of enhancers

in animal genomes. All together, these results suggest that peak-

zilla is ideal for identifying regions with multiple binding sites

and that such information is important for detecting functional

enhancers.

3.4 High resolution of peakzilla

The evaluation of TFBS predicted from ChIP-seq data (i.e.

peaks) is complicated by the fact that a ground truth typically

does not exist for experimental ChIP-seq datasets. This is espe-

cially true for the evaluation of peak calls at different resolutions
that predict a single TFBS versus several closely spaced TFBS.

Although the occurrence of TF motifs is a good proxy for inde-

pendent binding events, we sought to demonstrate the validity of

peak splitting more directly by generating semisynthetic datasets

with defined peak-to-peak distances. We found that peakzilla is

still able to separate all peak pairs at 150 bp without calling any

false positives, which is the best resolution compared with all

others methods (Fig. 4).

3.5 Peakzilla leverages increased resolution of ChIP

experiments

To directly demonstrate peakzilla’s ability to make use of

increased experimental ChIP resolution, we performed conven-

tional ChIP-seq for Twist from Drosophila embryos with increas-

ingly smaller fragment sizes. For this, the chromatin was

sonicated into relatively small DNA fragments and then further

Fig. 3. Functionality of multiple peak regions. Analyses performed on the Twist dataset in D.melanogaster. (a) Example of peak split. Peakzilla detects

three adjacent peaks, while MACS, QuEST, CisGenome and PeakRanger report a single large peak region, and SISSRs and spp report two peak regions

(GPS did not call any peak in that region; we considered all peaks called with standard parameters for each method). (b) Split peaks match motif

occurrences. All peakzilla peaks corresponding to a single MACS peak (major: same summit; minor: additional summit) are more highly enriched in

Twist motifs than control regions, suggesting that they constitute true independent TFBSs. The same is true for motifs of Snail and Dorsal, which are

TFs known to cooperate with Twist. (c) Split peaks are highly conserved. (d) Split peaks are enriched for known enhancers. (e) Split peaks are enriched

for mesodermal enhancers
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trimmed by DNase I digestion before ChIP (see ‘Methods’ sec-

tion). This yielded three ChIP datasets with estimated fragment

sizes of 102, 72 and 49bp, from which we called peaks with the

different peak finders (Fig. 5a). We expected that with decreasing

fragment sizes, the width of the identified peaks should decrease

and the resolution, i.e. the ability to resolve closely spaced bind-

ing sites, should increase. Indeed, the peak regions reported by

peakzilla, but not those reported by most other methods, showed

decreased width with decreasing fragment sizes (Fig. 5a). More

importantly, the resolution, as measured by the minimal peak-

to-peak distance (after removing 1% outliers), increased with

decreasing fragment sizes for peakzilla, but not for other meth-

ods (Fig. 5b). SISSRs, GPS and peakzilla performed well on the

small-fragment sample, with peakzilla reaching the highest reso-

lution of all methods. These results demonstrate that the max-

imum benefit of experimental methods with higher resolution

can only be obtained when used together with high-resolution

computational methods such as peakzilla.

3.6 Peakzilla as a peak caller for ChIP-exo data

The recently developed ChIP-exo method adds a lamda exo-

nuclease digestion step after ChIP, which trims the 50 DNA

strand until the cross-linked TFBS (Rhee and Pugh, 2011).

This digestion end point can be mapped to the genome using

the remaining single-stranded overhang. Because each TFBS can

be mapped from both sides, the resulting distribution of mapped

breakpoints is also bimodal and resembles that of conventional

ChIP-seq, with the ‘fragment sizes’ corresponding directly to the

actual sizes of the TF footprints. To our knowledge, no compu-

tational method has been specifically developed for the analysis

of ChIP-exo data.
We therefore assessed how well peakzilla and other methods

perform on ChIP-exo datasets. We called human CTCF binding

sites from published ChIP-seq data (Cuddapah et al., 2009) and

ChIP-exo data (Rhee and Pugh, 2011). Peakzilla reported esti-

mated fragment sizes of 98bp for ChIP-seq and 36bp for

ChIP-exo (Fig. 5c) and had the highest resolution (smallest

peak-to-peak distance) among all methods tested (Fig. 5d).

This suggests that peakzilla is well suited for high-resolution

ChIP-seq data, including ChIP-exo.

4 DISCUSSION

Understanding how combinations of TFs bind to DNA to regu-

late gene expression is one of the most pressing questions of

today’s biology. Its importance is witnessed by recent community

efforts that aim to determine all functional elements in the gen-

omes of model organisms and the human [e.g. ENCODE

(ENCODE Project Consortium, 2004), modENCODE

(Celniker et al., 2009), Mouse ENCODE (Mouse ENCODE

Consortium et al., 2012)]. The availability of high-throughput

sequencing at low cost widely promoted the use of the ChIP-

seq methodology and an enormous number of datasets for dif-

ferent TFs from various species, developmental stages or tissues

are becoming available. This enables the identification of in vivo

binding sites and thus enhancers that contain multiple binding

sites for a single TF or multiple different TFs. While it is widely

accepted that enhancers are characterized by clusters of TF bind-

ing motifs (Berman et al., 2002; Schroeder et al., 2004), it has

remained less clear to what extent each of several clustered TF

binding motifs is bound in vivo (Yáñez-Cuna et al., 2012).

Similarly, potential constraints on the relative distance or orien-

tation of co-bound TFs have remained unclear, yet might be

crucial to understand the molecular mechanisms and to decipher

the sequence basis of gene regulation (Yáñez-Cuna et al., 2013).
To experimentally address this question, it is important to re-

solve closely spaced binding sites and precisely predict their lo-

cation from ChIP-seq data, challenges that current

improvements to the ChIP methodology have started to address

[e.g. ChIP-exo (Rhee and Pugh, 2011)]. However, while many

computational tools exist to identify enriched regions (peaks)

from ChIP data (‘peak calling’), many of them are not designed

to fully leverage these improvements, e.g. the increased reso-

lution or the vastly increased number of deep sequencing reads

of modern deep sequencing (Chen et al., 2012). To meet these

challenges, especially the need for discovering TFBSs at high

Fig. 4. High resolution of peakzilla. We evaluated the different methods on semisynthetic datasets that contained peak pairs at decreasing peak-to-peak

distances (i.e. resolution). For each method, we determined a true-positive rate (TPR; number of correct peak calls divided by the total number of true

peaks) and FDR (number of false peak calls divided by the number of total peak calls) and indicate the best resolution reached (in base pairs below each

method’s name)
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resolution, we have developed a new computational method,

peakzilla.
The importance of high resolution and precision is also sup-

ported by alternative efforts to correctly position predicted

TFBSs, for example, by taking the location of enriched sequence

motifs into account (Boeva et al., 2010; Guo et al., 2012; Wu

et al., 2010). Although TFBSs predicted by peakzilla coincide

well with the known sequence motifs of the respective TFs, it

is important to note that we chose to predict the TFBS locations

from the ChIP-seq data alone, without taking sequence motifs

into account: it is well established that within TFBSs, motifs for

different TFs can be more highly enriched in TFBSs than motifs

for the precipitated TF itself. For example, the binding sites of

most TFs in the early Drosophila embryo are highly enriched in

motifs for the TF Zelda (Bradley et al., 2010; Li et al., 2008;

Kvon et al., 2012; modENCODE Consortium et al., 2010;

Satija and Bradley, 2012; Yáñez-Cuna et al., 2012), such that

the Zelda motif–which is sometimes more highly enriched than

the motif of the TF of interest–might bias the correct prediction

of the TFBSs and possibly hinder the study of relative position-

ing and orientation of TFBSs.

The combination of maximum experimental resolution and a

peak caller like peakzilla thus makes full use of recent ChIP-seq

approaches and will be invaluable for testing hypotheses on how

combinatorial TF binding realizes the developmental blueprint

encoded in the regulatory regions of our genomes. Indeed, clo-

sely spaced Twist binding sites resolved by peakzilla coincided

and were strongly enriched in known enhancers, corroborating

the prevalent model that functional enhancers are characterized

by clusters of TFBSs. The increasing number of ChIP studies

that determine the in vivo binding sites of TFs at high resolution

will prove invaluable for our understanding of enhancer function

and transcriptional regulation.

5 METHODS

5.1 Peakzilla algorithm

Initially, peakzilla reads the coordinate files of the mapped reads of the IP

and–optionally–control sample. These can stem from either single-end

(BED format) or paired-end (BEDPE format) deep sequencing data.

Peakzilla then first determines the average fragment size of the sequen-

cing library to determine the peak size that should result from a true

TFBS. For paired-end data, this corresponds directly to the average frag-

ment size (i.e. the average distance of the two mapped ends of each

fragment). For single-end data, the average fragment size is estimated

from the shift size of positive and negative reads in the top 200 enriched

regions in the ChIP sample as described before. Peakzilla then defines

peak size as two times the fragment size, as all reads from the ends of

Fig. 5. Application to high-resolution data. (a) Average fragment densities and peak regions from low- (red), medium- (purple) and high-resolution

(blue) peaks for Twist (best 1000 peaks of each method). SISSRs, spp and GPS are not shown, as they do not report peak regions but only summit

positions. (b) Resolution achieved by the different methods at low- (red), medium- (purple) and high-resolution (blue) as calculated as the minimal peak-

to-peak distance (after removing 1% outliers for each method). (c) Average fragment densities and peak regions from ChIP-seq (red) and ChIP-exo

(blue) peaks for CTCF (best 1000 peaks of each method; QuEST and PeakRanger cannot be used without a control sample). (d) Resolution of the

methods calculated as in (b)
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fragments immunoprecipitated due to a single TFBS will on average lie in

this region.

In a second step, the distribution of positive and negative strand reads

that are to be expected is modeled. By default, two normal distributions

are used with standard deviations stdev¼ peak size/5 and locations of

their means at one-fourth and three-fourth of the peak size, respectively.

Alternatively, the user can choose to estimate the model empirically from

the average distribution of reads within the top 200 candidate peaks in the

ChIP.

To call TFBSs, peakzilla first scans the genome counting reads within

a ‘double-window’: each putative (candidate) TFBS receives the counts of

positive strand reads within a window of the fragment size downstream of

the candidate TFBS and the negative strand reads within an equivalent

window upstream of the candidate TFBS. This scores all candidates with

a raw score defined as the normalized read count in the IP sample (nor-

malized to a library size of 1 million reads) minus the normalized read

count in the control (i.e. input) sample (note that the correction with a

control sample is optional). Final peaks are the candidates with summits

that are local maxima at least one fragment length (half peak size) apart

from each other. This scanning mode allows for both fast and compre-

hensive investigation of large genomes at single base resolution.

To obtain a final peak score, each raw score is corrected with a multi-

plicative distribution score [0 . . . 1] that assesses the fit of the observed

read count distribution to the distribution expected from the model

(see above). This fit is assessed by a chi-square test and the chi-square

P-value becomes the distribution score, which provides a measure of how

likely the candidate peak is a true TFBS (distribution score: 1) or the

result of a sequencing artifact (distribution score: 0). Note that to robustly

estimate the average fragment size we only count distinct reads, i.e.

remove duplicates (before model building). For peak calling, however,

we did not remove duplicates but use the model to penalize polymerase

chain reaction duplicates. This strategy is more sensitive for datasets on

small genomes or with high coverage (see main text).

If a control sample is provided, an empirical false discovery rate

(FDR) is calculated for each peak by repeating the peak-calling step

(after fragment size estimation) with swapped IP and control sample

and scoring the resulting control peaks by the raw and distribution

score. This provides for each final peak score the number of true and

control peaks that achieve this score or better and thus an FDR estimate.

Peakzilla reports the TFBSs in a BED-like format including the gen-

omic positions, raw, distribution and final score, FDR and a peak

number according to each peak’s rank. In addition, the control peaks

and a log are reported.

The method is illustrated in a flowchart in Supplementary Figure S3.

Peakzilla can be downloaded from http://github.com/steinmann/peak-

zilla or http://www.starklab.org/data/peakzilla/

5.2 Program implementation

Peakzilla is implemented in Python 2 and runs on both the standard

CPython and the fast PyPy interpreter. The program is freely available

under the terms of the General Public License at http://github.com/stein-

mann/peakzilla. It runs from the command line under any Linux distri-

bution or OSX. The only required argument is the name of the file with

the aligned reads from the ChIP sample and–optionally–from the control

sample (both BED format). In addition, the following parameters can be

used: �m to specify the number of candidate binding sites to use to

estimate fragment size (default: 200); �l to limit the candidate regions

to lengths above a certain minimum length (which may be necessary if the

dataset contains a large number of strong polymerase chain reaction

artifacts; default: off [1]); �f to set a FDR cutoff (default: off [100]);

�c to set an enrichment cutoff (default: 2); �s to set a score cutoff (de-

fault: 1); �l to specify logfile (default: log.txt); �e to use an empirical

estimate derived from the data for the model instead of a normal distri-

bution (default: off);�p to specify that the data corresponds to fragments

sequenced at both ends (paired-end sequencing; default: off). For a

human ChIP-seq dataset with 19.7 million reads and 7.8 in the control

peakzilla runs in 4 min and consumes 5800MB of memory under

CPython. Using the faster PyPy interpreter reduces time needed for ana-

lysis and memory requirements by half. Peakzilla can therefore be run

efficiently on any modern desktop computer.

5.3 ChIP-seq datasets

Raw sequencing reads for Twist in D.melanogaster (He et al., 2011)

(ArrayExpress accession code E-MTAB-376), CEBPA in Mus musculus

(Schmidt et al., 2010) (GEO accession code GSE22078) and PHA-4 in

C.elegans (Zhong et al., 2010) (GEO accession code GSE14545) were

aligned uniquely using bowtie allowing for three mismatches to the cor-

responding genomes (assemblies dm3, mm9 and ce6, respectively). For

NFkB in Homo sapiens (Kasowski et al., 2010) (GEO accession code

GSE19486), Ste12 in S.cerevisiae (Zheng et al., 2010) (GEO accession

code GSE19636) and CTCF ChIP-seq (Cuddapah et al., 2009) (GEO

accession code GSE12889) and ChIP-exo (Rhee and Pugh, 2011)

(which the authors kindly shared) in H.sapiens, already mapped reads

were used (assemblies hg18, sarCer2 and hg18, respectively).

5.4 Semisynthetic datasets

We generated semisynthetic control (input) and ChIP samples by sub-

sampling input samples and ChIP peaks: we generated two 30 million bp

artificial chromosomes by repeatedly randomly subsampling an arbitrar-

ily selected region from the Twist input sample that showed no strong

enrichment, one as a semisynthetic input control and the second as a

ChIP background. We next selected several highly ranking peaks from

the Twist ChIP sample that were found by all methods, had no other

peak nearby and showed a regular fragment density distribution. We

subsampled them to yield peaks with an enrichment of 5-fold or higher

over background and placed such peaks as pairs with defined peak-to-

peak distances into the background every 30 000bp for 1000 peak-pairs.

For each distance between the semisynthetic peak-pairs, we combined the

semisynthetic chromosome with the experimental ChIP data for peak

calling of the combined set (i.e. parameters are estimated primarily on

the experimental dataset as it contains higher peaks).

5.5 High-resolution ChIP-seq

Embryos aged 2–4h after egg laying were processed and immunopreci-

pitated with Twist antibodies based on the protocol by He et al. (2011)

with slight modifications. Sonication occurs in three microfuges, each

with �80mg chromatin extracts resuspended in 250ml A2 buffer, in a

Biorupter sonicator for 15min on high (30 s on and off) at 4�C. After

15min cooling, the sonication step is repeated, followed by high-speed

centrifugation at 4�C for 10min and pooling of the supernatant (the

DNA fragments should be mostly between 200–500bp). Six hundred

microliters of supernatant are then incubated with 120ml of DNAse I

(RNAse-free from NEB, to 0.3U/ml final concentration) and 80ml of
DNAse I buffer for 30min at 37�C. To stop DNAse I activity, A2

buffer with 10% sodium dodecyl sulfate is added to a give a final con-

centration of 1% sodium dodecyl sulfate. The extract is then directly used

for ChIP (the DNA fragments should now be mostly between 50 and

200bp). During Illumina library preparation, the samples are run on a

2% gel at 90V for �2h, and fragments corresponding to �50, �75 and

�100bp inserts are cut out of the gel (slices are �25bp thick). The final

libraries are run a BioAnalyzer to measure the actual average insert size.

The high-resolution ChIP-seq data for Twist is deposited on GEO under

the accession code GSE40664.
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5.6 Peak calling

The format of the mapped reads was adapted to each method. Peakzilla,

SISSRs (Jothi et al., 2008) version 1.4, cisGenome (Ji et al., 2008) version

2.0, Spp (Kharchenko et al., 2011) version 1.8 and GPS (Guo et al., 2010)

version 0.10.1 were run with default parameters. MACS (Zhang et al.,

2008) version 1.4.1 was run with an mfold parameter 3,30 and the gsize

parameter was adapted for each genome. QuEST (Valouev et al., 2008)

version 2.4 was run with the following interactive choices: TFBSs with

recommended (or relaxed) peak calling parameters. PeakRanger (Feng

et al., 2011) read extension length parameter was run using peakzilla’s

estimated fragment length. Both QuEST and PeakRanger could not be

used for the CTCF samples without a control dataset.

5.7 Functional analyses

We used the known motif CACATGT for Twist and the motifs from

JASPAR (Sandelin et al., 2004): snail (sna MA0086.1), dorsal (dl_1

MA0022.1), NFkB (NFKB1 MA0105.1), CEBPA (CEBPA MA0102.2),

pha-4 (Foxa2 MA0047.1), Ste12 (STE12 MA0393.1). We searched for

motif de novo using MEME (Bailey and Gribskov, 1998) within 31bp

around peak summits and for occurrences of the known motifs using

MAST (Bailey and Gribskov, 1998) (from the MEME suite programs

version 4.1.1) with a P-value of 10�3 (10�2 for Twist, which corresponds

to allowing for one mismatch) in an area of 151bp (average genomic frag-

ment length) around each peak summit. We called a peak conserved when

it overlapped with a peak region in all other Drosophila species from He

et al. (2011) (Drosophila simulans, Drosophila yakuba, Drosophila erecta,

Drosophila ananassae and Drosophila pseudoobscura). We overlap peaks

with known Twist enhancers from He et al. (2011) and the known meso-

dermal enhancers fromBonn et al. (2012) (onlyM formesodermat stage 5,

6 and 7). To create a set of control peaks, we shuffled peaks randomly

within the same chromosomes.
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