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INTRODUCTION
To understand how cis-regulatory elements determine gene expres-
sion, the global identification of in vivo transcription factor binding 
sites is an invaluable tool. It is usually achieved by ChIP followed 
by microarray analysis (i.e., ChIP-chip)1,2, or, more recently, by 
deep sequencing (ChIP-seq)3,4. The focus of many current ChIP-
seq studies is the comparison of transcription factor binding pro-
files across different conditions such as different developmental 
time points5,6, cell types (e.g., within one cell lineage7,8) or closely 
related species9,10. However, such comparative ChIP-seq studies 
are highly dependent on appropriate computational approaches, 
which are often still lacking. Most notably, stringent thresholds 
are typically used to reliably identify transcription factor binding 
sites. However, this method does not discriminate subthreshold 
binding from truly nonbound regions, and it is subject to noise, 
which can lead to an underestimation of the overlap in binding 
between two data sets.

Here we present a computational approach for the compara-
tive analysis of ChIP-seq data that we recently developed to 
compare binding of the mesodermal transcription factor Twist 
across six closely related Drosophila species9 (Fig. 1). We describe 
technical guidelines and provide code with sample data for the 
preprocessing and mapping of ChIP-seq reads, the translation of 
ChIP-seq data to a common reference genome (for cross-species 
analyses), approaches for a threshold-free comparison of global 
binding similarity, an analysis of binary presence/absence bind-
ing of patterns (e.g., to estimate the conservation of binding) 
and the assessment of quantitative changes in binding. We also 
discuss functional and comparative sequence analyses of tran-
scription factor binding. Although this protocol was specifically 
developed for analyzing transcription factor ChIP-seq experi-
ments in different Drosophila species9, we have found that it 
works well when comparing transcription factor ChIP-seq data 
between different vertebrates and across different conditions 
(see ANTICIPATED RESULTS). We believe that the protocol can 
easily be adapted to ChIP-chip data or comparative studies of 
chromatin marks.

Translation to common coordinates for cross-species 
comparisons
Comparative ChIP-seq analyses across different species require 
the data to be translated across genomes. Although a gene- 
centric approach is conceivable, it would restrict the analysis to 
genomic regions in the vicinity of genes. Therefore, when closely 
related species are analyzed, the easiest way is to translate species- 
specific genomic coordinates to a common reference (using avail-
able genome alignments and tools for coordinate translation such 
as LiftOver from the University of California Santa Cruz (UCSC)). 
The common reference species is typically the one with the most 
complete genome assembly and annotation, which is Drosophila 
melanogaster when comparing Drosophila species9,11 and humans 
when comparing mammals or vertebrates10,12,13. We generally 
find that using a common reference genome works well in com-
parative ChIP-seq analyses, and that the measured binding diver-
gence is mostly independent of the chosen reference genome as 
long as a similar number of peaks are identified in each sample9  
(see ANTICIPATED RESULTS).

There are two ways to translate ChIP-seq data to a common  
reference genome using the UCSC LiftOver tool. First, peaks can 
be called in the different species independently and the peak region 
coordinates then translated to the reference genome. Second, the 
raw reads can be mapped to the different respective genomes and 
their coordinates then directly translated to reference coordinates. 
Thus, the read coordinates rather than the peak coordinates are 
translated. We use the latter approach as we did not find substantial 
differences between the two approaches9, and this approach allows 
a larger variety of downstream analyses (e.g., the assessment of 
global similarity by the Pearson correlation coefficient (PCC) and 
the analysis of quantitative changes).

Assessing the global similarity of transcription factor binding
A powerful method to assess the overall similarity between two 
transcription factor binding landscapes is the PCC between 
the respective genome-wide read densities (read counts at each  
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position in the genome). As the PCC is threshold independent and 
invariant to scale, it eliminates some of the challenges associated 
with using thresholds for peak calling, and is more robust against 
experimental variation of peak heights. We also use the PCC to 
assess the similarity between biological replicates and to obtain 
a quality measure of each ChIP sample by comparing it with the 
corresponding input control sample (see Experimental design and 
Anticipated results).

Global identification of transcription factor-binding sites 
(‘peak calling’)
A common step in all ChIP-seq analyses is the global identification 
of transcription factor binding sites or ‘peaks’, which are regions 
with markedly enriched read densities in the ChIP sample. Many 
computational tools are available for calling peaks reliably in the 
entire genome (e.g., MACS14; for an overview see ref.15). Typically, 
enrichments of read counts are calculated between the ChIP sam-
ple and an input sample, which should control for potential biases 
in the experimental procedure (see Experimental design). Another 
important element is the correction for multiple testing, as the peaks 
are selected by testing a large number of possible genomic regions 
for high ChIP enrichment; i.e., a scenario in which even the best of 
many random candidates would show good enrichments16,17. A good 
measurement that corrects for multiple testing is the false discovery 
rate (FDR; we recommend ≤ 1% when calling peaks). Note that 
most programs for ChIP-seq data analysis assess the FDR empiri-
cally, e.g., by swapping ChIP and input samples (i.e., MACS).

Comparing peak presence across conditions (binary analysis)
Although calling peaks in a ChIP-seq sample is well established, 
comparing two ChIP-seq samples with each other is not. Merely 
comparing two samples by overlapping the genomic coordinates 
of their respective individually called binding peaks has inherent 
statistical problems, and leads to an underestimation of binding 
similarity (Fig. 2).

First, the overall global binding similarity is underestimated 
because of the so-called ‘winner’s curse’18. Genome-wide experi-
ments are intrinsically subject to noise, and thus replicate experi-
ments systematically produce different values or ranks for peaks, 
even if the samples are of very high quality. Therefore, if two rep-
licates are independently thresholded at an identical value, peaks 
that are above the threshold in one might be below the threshold in 
the other and vice versa. Although this is appropriate to stringently 
define a high-confidence set of peaks, it prohibits a fair estima-
tion of the respective number of peaks that are shared between 
conditions versus peaks that are condition-specific. For example, 
if we compare two replicate experiments by overlapping their 
binding peaks, we typically find that only ~75% of peak regions 
overlap with a peak region in the other sample (see also Fig. 3 and 
ANTICIPATED RESULTS), although their binding profiles look 
virtually identical and show PCCs of 0.9 and higher.

Second, intersecting independently called peak regions are overly 
stringent as each sample is corrected for multiple testing during 
peak calling. When assessing binding across different conditions, 
one is generally interested in the number of shared and unique 
binding sites, a scenario in which significance measures must not 
be corrected for multiple testing: the task is not to assess the sig-
nificance of the very best shared peaks, but rather to fairly assess 
the number of both types of peaks. The use of multiple testing 
correction makes the threshold for binding in the second data  
set too stringent and leads to an underestimation of shared bind-
ing events.

To address these issues, we do not intersect peak regions, but 
instead separate the steps of binding site identification from the 
analysis of binding site changes. Although we call peaks with a strin-
gent multiple testing–corrected FDR threshold for the reference 
sample, we assess binding in the other samples by a nonrandom 
enrichment of ChIP versus input (not corrected for multiple test-
ing) at the positions corresponding to each binding site in the 
reference sample. Using this protocol, we typically found a near 

Figure 1 | Computational pipeline for 
comparative analyses of ChIP-seq data.  
Raw reads are preprocessed and mapped  
to the respective genome sequences.  
For comparisons across species, mapped  
reads are translated onto a chosen reference 
genome. Read densities can be visualized  
along the genome, and peaks representing 
binding events are called. Comparative  
analyses include a threshold-free comparison  
of global binding similarity, analyses of the 
binary presence/absence of binding patterns  
(i.e., peak conservation) and quantitative assessment of binding changes. Functional and sequence analyses such as expression and Gene Ontology33 (GO) 
analysis of target genes, motif search and sequence conservation can then be conducted.
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Figure 2 | Choice of sensitive thresholds when comparing ChIP-seq 
samples. During genome-wide peak calling, only the best peaks pass the 
stringent thresholds required for low false discovery rates (FDRs) due to the 
correction for multiple testing (orange lines). Regions may show substantial 
tag enrichment, yet are not called as peaks (green line). When comparing 
peaks across conditions, we advocate using ‘significant enrichment’  
(not multiple testing–corrected) as the measure to assess whether a  
peak is shared across conditions or is truly condition-specific. Merely 
intersecting peaks called at each condition would miss conserved peaks 
(e.g., middle examples).
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100% agreement between biological replicates while not substan-
tially underestimating divergence as shown using control peaks 
(i.e., peaks shifted to random locations).

Assessing quantitative changes in transcription factor binding
Transcription factor binding across a population of cells is not 
an all-or-none phenomenon, but rather represents a quantitative 
measure19; i.e., transcription factors can occupy their binding sites 
at different rates. To measure these more subtle quantitative bind-
ing differences across samples, the quantitative changes in peak 
heights can be analyzed across samples11. We first stringently call 
peaks for each of the conditions independently using multiple 
testing corrected thresholds and compile a unique set of peaks 
called in at least one condition. These positions are then used to 
assess the peak heights and the corresponding genomic positions 
under all conditions. Thus, peak heights are assessed even when 
the peak was not called under a specific condition. Note that as 
peaks from all conditions are analyzed, the identified changes in 
binding between conditions are inherently unbiased (i.e., sym-
metrical) with respect to the different samples and the choice of 
the reference sample.

For such analysis, a key consideration is the normalization 
method (see also EXPERIMENTAL DESIGN). When compar-
ing conditions within one organism using the same antibody, we 
recommend normalizing only the read counts to the respective 
library sizes and input controls. This allows the comparisons of 
different conditions even when the total number and height of 
peaks is expected to change (e.g., an induced versus uninduced 
condition). When using different antibodies or different species, the 
signal-to-noise ratios might not be comparable across experiments 
because of differences in the antibodies’ affinities. In this case, it 
is helpful if one can reasonably assume that the total number of 
binding sites is constant (e.g., when studying a conserved biological  
system across different species9). Furthermore, the heights of peaks 
and the corresponding genomic locations can be normalized using 
quantile normalization, a method that is frequently used in micro-
array data analysis.

Functional analysis
A frequent goal of ChIP-seq experiments is the assignment of target 
genes to the binding peaks identified for transcription factors. This 
is nontrivial, however, as enhancers bound by transcription factors 

are able to activate their target genes from remote distances and 
even across nonregulated genes located in between (e.g., more than 
1 Mb for the mouse gene Shh (encoding Sonic hedgehog)20,21; see 
also shadow enhancers in Drosophila22). Although such distances 
may not actually be far within the spatial arrangement of the chro-
matinized genome in the nucleus, information about 3D contacts 
between genomic regions is not available and cannot be used for 
peak-to-gene assignments. A practical shortcut is therefore to assign 
peaks to the closest gene transcription start site (TSS) along the 
genome sequence. As data on insulator protein binding sites are now 
available (e.g., for the Drosophila23, mouse13 and human24 genomes), 
gene assignment can be prohibited across insulator sites.

Once peaks are assigned to target genes, the target genes can be 
functionally analyzed using Gene Ontology (GO) categories or 
gene expression data. This cannot easily be done by standard analy-
ses as peak-to-gene assignment is heavily biased by gene lengths25 
(see discussion in ref. 26), which often leads similar categories to 
seem enriched in all samples. To solve this problem, we determine 
the rate of binding change between samples for all peaks in each 
GO category or expression class (i.e., the fraction of the conserved 
(or divergent) peaks among all peaks per GO category). In this 
manner, the analysis is independent of the overall number of peaks 
in each category.

Comparative sequence analysis
Experimentally determined transcription factor binding across 
different species or different conditions provides an opportunity 
for analyzing the sequences that may mediate transcription factor 
binding. In fact, such comparative ChIP-seq data sets have proved 
successful in illuminating potential mechanisms of combinatorial 
binding9–11,27,28. This is because sequences in enhancers frequently 
change despite the conservation of enhancer function, but impor-
tant binding motifs for transcription factors are often conserved 
(reviewed in ref. 29). Here we describe approaches for analyzing 
overall sequence conservation and divergence in binding regions 
(i.e., mutations, insertions and deletions), as well as for investigat-
ing the conservation of specific transcription factor binding motifs 
in peaks with binding loss, gain or quantitative change.

Examples of data that can be analyzed with our procedure
The procedure has been developed for the comparative analysis 
of Twist ChIP-seq data from different Drosophila species9, and we 

Figure 3 | Assessing choice of thresholds  
and its impact on conservation estimates.  
(a) Conservation estimates based on overlapping 
high-confidence peaks: D. melanogaster versus  
D. melanogaster replicate (purple), D. yakuba 
(green) and D. pseudoobscura (orange). The 
nonconserved peaks between the D. melanogaster 
replicates (gray) highlight the problem inherent to 
this approach (Fig. 2). (b) The average read count 
of nonconserved replicate peaks (gray) from a is 
much higher than the genome average. (c) The 
highest read count within a 4-kb window around 
a peak of the reference data set that appears 
nonconserved in a biological replicate (gray, see a)  
remains at the position that corresponds to the peak summit of the reference. (d) By requiring high-confidence peaks to display a significant enrichment of 
read count in the other conditions, more sensitive conservation estimates (numbers above bars) are obtained for a biological replicate (purple), close species 
(D. yakuba; green) and more distant species (D. pseudoobscura; orange) compared with using an identical threshold in both species (black lines). Random control 
regions (gray) are obtained by offsetting all peaks by 20 kb. D. mel, D. melanogaster; D. yak, D. yakuba; D. pse, D. pseudoobscura. Data are from He et al.9.
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provide an original raw data set so that our analysis steps can be 
traced and used as a guide (see MATERIALS). We have also tested 
the applicability of our comparative pipeline in vertebrate species, 
as well as in Caenorhabditis elegans binding data across different 
developmental stages. For vertebrates, we analyzed CEBPA bind-
ing in the livers of humans, mouse, dog, opossum and chicken10, 
and found that our approach is sensitive across a wide range  
of thresholds. In C. elegans, we compared ChIP-seq data of the 
transcription factor PHA4/FOXA in embryo and the first stage of 
larval development30.

Experimental design
General principle. In a ChIP experiment, transcription factors are 
cross-linked to DNA in their native state and whole-cell extract is pre-
pared, which serves as input for the immunoprecipitation31. During 
the immunoprecipitation, the transcription factor and the associated 
DNA fragments are pulled down from the extract. As some proteins 
and DNA fragments are also pulled down nonspecifically, the DNA 
fragments that are sequenced at the end are a mixture between real 
signal (the binding sites of the transcription factor) and nonspecific 
background. To achieve high signal-to-noise ratios, a good antibody 
is crucial. However, the amount of starting material and the exact 
experimental conditions can also influence the signal-to-noise ratios. 
After systematic optimization of the protocol, small variations may 
still exist between different experiments.

Choice of a control sample. To control for the nonspecific back-
ground, the input sample or sample obtained from a mock immu-
noprecipitation (the same procedure without specific antibodies) 
is sequenced. Although a mock immunoprecipitation is the ideal 
control in theory, it can produce DNA that is below the recom-
mended amount for sequencing. Even if such low amounts of 
DNA can be amplified and sequenced, the sample may be noisy 
and unrepresentative as a result. For this reason, we use the input 
sample as control.

Planning for data normalization. As the signal-to-noise ratio in 
comparative ChIP-seq experiments may differ, we recommend 

following one of two strategies. First, if samples from different 
experimental conditions are compared and the same antibody is 
used32, we recommend performing the series of experiments side 
by side as this minimizes differences in signal-to-noise ratios due 
to experimental variability. By using this strategy, the ChIP-seq data 
do not need to be normalized to each other (other than by the total 
library read count) and differences in overall binding enrichments 
can be detected. Second, if this strategy is not possible because dif-
ferent species or antibodies are used, quantile normalization can 
be used to adjust for differences in signal-to-noise ratios between 
samples if one can reasonably assume that the overall binding 
of the factor is similar (e.g., if the factor is well conserved and is 
expressed at similar levels in the same tissue across species). If this 
assumption is not justified, it is still possible to identify qualitative 
differences between samples while being aware that conclusions on 
the overall binding strength cannot be made. In general, the smaller 
the biological and experimental variation outside the variable of 
interest, the clearer the results will be.

Biological replicates are used to assess the overall similarity and 
reproducibility of the ChIP experiments. They are derived from 
independent biological samples and are treated independently in 
the experimental process; thus, they differ because of biological 
variability and technical noise. They may be performed side by 
side, if all samples can be processed at the same time, or on differ-
ent days, if the experimental samples to be compared are also not 
processed together.

Sometimes the results of replicate experiments are pooled to 
buffer for technical or biological variability and to improve the 
overall sample quality. However, pooling biological replicates 
interferes with the assessment of variability, which is crucial when 
comparing ChIP samples across conditions: differences between 
conditions can only be interpreted meaningfully when compared 
with differences between biological replicates (the upper bound for 
measures of similarity as described above). We therefore perform 
the entire analysis independently for each biological replicate, such 
that the differences between biological replicates can be observed 
throughout the analysis process.

MATERIALS
EQUIPMENT

Data
Test data set: Drosophila ChIP-seq data of Twist in early embryos from  
D. melanogaster and D. yakuba can be obtained from http://www.starklab.
org/data/bardet_natprotoc_2011 or ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/)
LiftOver files from UCSC (http://hgdownload.cse.ucsc.edu/downloads.
html)
Gene annotation from UCSC (http://hgdownload.cse.ucsc.edu/downloads.
html)
Gene ontology33 (http://www.geneontology.org/)
Motif PWMs (e.g., from TRANSFAC34, http://www.biobase-international.
com/product/transcription-factor-binding-sites, for which a freely available 
and a commercial version exist, and/or JASPAR35 (http://jaspar.genereg.
net/), which is freely available)
Multiple sequence alignment from UCSC (http://hgdownload.cse.ucsc.
edu/downloads.html)
Conservation scores from PhastCons36 on UCSC (http://hgdownload.cse.
ucsc.edu/downloads.html)

•
•

•

•

•
•

•

•

Software
Computer workstation with Unix-based operating system (we used the 
Linux distribution Debian Lenny); note that the processing of the test data 
set requires 10 GB of free hard-drive space (see EQUIPMENT SETUP)
Quality check of sequenced reads: FASTX-Toolkit (version 0.0.13; http://
hannonlab.cshl.edu/fastx_toolkit/)
Read mapping: Bowtie37 (version 0.12.7; http://bowtie-bio.sourceforge.net/index.
shtml); alternative software for read mapping is discussed in Horner et al.38

File manipulation: SAMTools39 (version 0.1.16; http://samtools.sourceforge.
net/)
File manipulation: BEDTools40: bamToBed, bedToBam, genomeCover-
ageBed, intersectBed, shuffleBed, mergeBed and closestBed (version 2.10.0; 
http://code.google.com/p/bedtools/)
Get genome’s chromosome sizes: fetchChromSizes from UCSC (http://
hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/)
File format conversion: wigToBigWig from UCSC41 (http://hgdownload.cse.
ucsc.edu/admin/exe/linux.x86_64/)
Web browser and UCSC Genome Browser41 (http://genome.ucsc.edu/cgi-bin/
hgGateway)

•

•

•

•

•

•

•

•
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Coordinate translation: LiftOver from UCSC41 (http://hgdownload.cse.ucsc.
edu/admin/exe/linux.x86_64/)
Pearson correlation: correlation.awk provided as Supplementary Data and 
on http://www.starklab.org/data/bardet_natprotoc_2011
Peak calling: MACS14 (version 1.3.7.1; http://liulab.dfci.harvard.edu/
MACS/); alternative software for peak calling is discussed in Wilbanks and 
Facciotti15

Statistical software for data analysis and graphing such as R (http://www.
r-project.org/)
De novo motifs search: MEME-ChIP (MEME42; http://meme.sdsc.edu/)

•

•

•

•

•

Scan genome for known motifs: MAST43 (http://meme.sdsc.edu/);  
alternative software for motif search is discussed in Das and Dai44 and  
Tompa et al.45

EQUIPMENT SETUP
Computing environment  We use hardware from Sun Microsystems, which 
consists of a working host with 8 AMD Dual-Core Opterons (16 cores, 3.0 
GHz CPU, 256 GB main memory) and 16 cluster nodes with each 2 AMD 
Six-Core Opterons (12 cores, 2.2 GHz, 64 GB main memory). The nodes are 
part of a larger grid-like computing cluster using Debian Linux and the Sun 
Grid Engine software.

•

PROCEDURE
Data preprocessing ● TIMING ~10 min
 CRITICAL We provide all code as Unix shell instructions that generally run on Unix/Linux distributions, allow line-by-line 
processing of large files and are typically very robust. Additionally required software and data are listed in the ‘MATERIALS’ 
section. Note that we restrict the explicit listing of code to the parts that are the core of this work and unique to it, namely 
the comparative ChIP data analysis. For completeness, we also provide instructions on possible downstream analyses. Input 
files are expected to be in a FASTQ format, but the code can be easily adapted to work with fasta or raw sequence files.  
We always suggest keeping large files in a compressed format (e.g., using gzip).

1|	 Sequence quality check. Assess the read quality by the average quality score (from FASTQ files) and nucleotide  
distribution at each position (using the FASTX-Toolkit) to identify potential sequencing errors and biases.

> for sample in chip_dmel input_dmel chip_dyak input_dyak; do

>        # FASTX Statistics

>        fastx_quality_stats -i <(gunzip -c ${sample}.fastq.gz) -o ${sample}_stats.txt

>        # FASTX quality score

>        fastq_quality_boxplot_graph.sh -i ${sample}_stats.txt -o ${sample}_quality.
png -t ${sample}

>        # FASTX nucleotide distribution

>        fastx_nucleotide_distribution_graph.sh -i ${sample}_stats.txt -o ${sample}  
_nuc.png -t ${sample}

>        # Remove intermediate file

>        rm ${sample}_stats.txt

>        done

2|	 Raw read count. Count the number of total and unique reads. In addition, it is worthwhile to check the number and 
identity of the most abundant sequences, which might identify a high amount of linkers or other contaminants.

> for sample in chip_dmel input_dmel chip_dyak input_dyak; do

>        echo -en $sample“\t”

>        # Number of unique reads and most repeated read

>        gunzip -c ${sample}.fastq.gz | awk ‘((NR-2)%4 =  = 0){read = $1;total +  + ;count 
[read] +  + }END{for(read in count){if(!max||count[read]>max)  
{max = count[read];maxRead = read};if(count[read] =  = 1){unique +  + }};print 
total,unique,unique*100/total,maxRead,count[maxRead],count[maxRead]*100/total}’

> done 

Read mapping and visualization ● TIMING ~1 h
3|	 Read length check. Reads from all compared samples should have the same length (i.e., truncate longer ones if  
necessary), as reads of different lengths differ in their matching properties; short reads match more easily but less often 
uniquely. The typical read length for ChIP-seq experiments is 36 nt, but older 18-nt-long reads are sufficient for ChIP-seq 
data analyses in Drosophila (see ANTICIPATED RESULTS).
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> for sample in chip_dmel input_dmel chip_dyak input_dyak; do 

>        echo -en $sample“\t”

>        # Read length

>        gunzip -c ${sample}.fastq.gz | awk ‘((NR-2)%4 =  = 0){count[length($1)] 
 +  + }END{for(len in count){print len}}’

>        # Truncate longer reads to 36 bp (if necessary)

>        LEN = 36

>        gunzip -c ${sample}.fastq.gz | awk -vLEN = $LEN ‘((NR-2)%2 =  = 0){print substr($
1,1,LEN)}else{print $0}’ | gzip > ${sample}_36 bp.fastq.gz

> done 

4|	 Read mapping. Map reads uniquely to the reference genome allowing for mismatches. We also exclude unassembled 
genome sequences (e.g., chrU and chrUextra for D. melanogaster). We recommend using the SAM output format and then 
convert the files to sorted BAM files (compressed binary version) and associated index (BAI) files using SAMTools. When 
needed (see Steps 5, 6 and Box 1), convert BAM files to BED files using BEDTools.
 CRITICAL STEP Reads from all compared samples should be mapped with the same settings in order to avoid bias in  
downstream analyses such as peak calling.
? TROUBLESHOOTING
> for sample in chip_dmel input_dmel; do 

>        gunzip -c ${sample}_36bp.fastq.gz | bowtie -q -m 1 -v 3 --sam --best --strata 
bowtie_index_dm3/dm3 - > ${sample}.sam

> done 

>        for sample in chip_dyak input_dyak; do

>        gunzip -c ${sample}_36bp.fastq.gz | bowtie -q -m 1 -v 3 --sam --best --strata  
bowtie_index_droYak2/droYak2 - > ${sample}.sam

> done 

> for sample in chip_dmel input_dmel chip_dyak input_dyak; do 

>        # Convert file from SAM to BAM format

>        samtools view -Sb ${sample}.sam > ${sample}_nonSorted.bam

>        # Sort BAM file

>        samtools sort ${sample}_nonSorted.bam ${sample}

>        # Create index file (BAI)

>        samtools index ${sample}.bam

>        # Revove intermediate files

>        rm ${sample}.sam ${sample}_nonSorted.bam

> done 

5|	 Mapped read count. Count the number of mapped reads, unique read coordinates and the maximum of reads mapped to 
the same genomic position. Manually inspect the ten most abundant nonmapped reads, which can help identify contamina-
tions of the library or the presence of the linker sequence.
> for sample in chip_dmel input_dmel chip_dyak input_dyak; do 

>        echo -en $sample“\t”

>        # Number of raw reads

>        raw = $(samtools view ${sample}.bam | wc -l)

>        # Number of raw, unique and most repeated reads

>        bamToBed -i ${sample}.bam | awk -vRAW = $raw ‘ {coordinates = $1“:”$2“ − ”$3; 
total +  + ;count[coordinates] +  + }END{for(coordinates in count){if(!max||count 
[coordinates]>max){max = count[coordinates];maxCoor = coordinates};if(count 
[coordinates] =  = 1){unique +  + }};print

RAW,total,total*100/RAW,unique,unique*100/
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Box 1 | Translation to common coordinates (for across-species comparisons)
1. Read translation. To enable direct comparisons, reads must be translated from the original species’ genome to a common reference 
genome (e.g., using LiftOver). If you run code on a single-core machine, follow option A. If you run code on a multi-core machine, 
follow option B.
 CRITICAL STEP The LiftOver minMatch (minimum percent identity between the two sequence chains required for translation) parameters 
should be adapted to the compared species. UCSC recommends using minMatch  =  0.9 and multiple  =  N for coordinate translation between 
the same species and minMatch  =  0.1 and multiple  =  Y for cross-species (see mail archive http://www.mail-archive.com/genome@soe.
ucsc.edu/msg02396.html). For the different Drosophila species, we adapted the parameters to minMatch  =  0.7 and multiple  =  N to  
account for the decreasing sequence similarity while preserving the requirement for unique matching during ChIP-seq data analysis.
?  TROUBLESHOOTING
(A) Standard processing on single-core machine (long running time) ● TIMING ~36 h
(i) Run on a single machine:
> for sample in chip_dyak input_dyak; do

>          # Translate the coordinates from genome to reference genome and keep information 

of where the reads came from in the genome in the name column of the BED file 

>          liftOver <(bamToBed -i ${sample}.bam | awk -vOFS = ‘\t’ ‘ 

{$4 = $1“:”$2“:”$3;print $0}’) droYak2Todm3.over.chain ${sample}_dm3_tmp.bed ${sample}_dm3_

lost.bed

>done 

(B) Parallel processing on multi-core machines ● TIMING ~8 h
(i) Run on a multicore machine (here: five cores):
> for sample in chip_dyak input_dyak; do

>          split = 5

>          # Split big input file in split (here: 5) smaller files and keep information of 

where the reads came from in the genome in the name column of the BED file

>          bamToBed -i ${sample}.bam | awk -vOFS = ‘\t’ -vSPLIT = $split -vFILE = ${sample}‘ 

{$4 = $1“:”$2“:”$3;print $0>(FILE“_”(NR%SPLIT) + 1“.bed”)}’

>          # Translate the coordinates from genome to reference genome 

>          for i in ‘seq 1 1 $split’; do 

>          liftOver ${sample}_${i}.bed droYak2Todm3.over.chain ${sample}_${i}_dm3_tmp.bed 

${sample}_${i}_dm3_lost.bed & 

>          done

> done 

> # Merge output files

> for sample in chip_dyak input_dyak; do

>          sort -k1,1 -k2,2n ${sample}_*_dm3_tmp.bed > ${sample}_dm3_tmp.bed

>          sort -k1,1 -k2,2n ${sample}_*_dm3_lost.bed > ${sample}_dm3_lost.bed

>          rm ${sample}_[0-9]*.bed 

> done 

2. Translated read count. Remove the read coordinates that change in length by more than 10% during translation because of  
alignment gaps and count the number of translated reads.
> for sample in chip_dyak_dm3 input_dyak_dm3; do

>          PERCENT = 10

>          # Remove reads which length changed by more than 10% 

>          awk -vPERCENT = $PERCENT ‘{split($4,COOR,“:”);lengthBefore = COOR 

[3]-COOR[2];lengthAfter = $3-$2;if(lengthAfter>(lengthBefore*(100-PERCENT)/100)&&lengthAfter> 

(lengthBefore*(100 + PERCENT)/100)){print > $0}}’ ${sample}_tmp.bed | grep -v “chrU”>  

${sample}.bed 

>          # Count number of translated reads

>          wc -l ${sample}_tmp.bed ${sample}.bed

>          # Convert BED to BAM file

>          bedToBam -i ${sample}.bed -g dm3.chrom.sizes > ${sample}_nonSorted.bam

>          # Sort BAM file

>          samtools sort ${sample}_nonSorted.bam ${sample}

>          # Create index file (BAI) 

>          samtools index ${sample}.bam

>          # Remove intermediate files

>          rm ${sample}_nonSorted.bam ${sample}_lost.bed ${sample}_tmp.bed ${sample}.bed

>done

http://www.mail-archive.com/genome@soe.ucsc.edu/msg02396.html
http://www.mail-archive.com/genome@soe.ucsc.edu/msg02396.html
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total,maxCoor,count[maxCoor],count[maxCoor]*100/total}’

>        # Total and top 10 of non-mapped reads

>        samtools view -f 0x0004 ${sample}.bam | awk ‘{read = $10;total +  + ; 
count[read] +  + }END{print “Total_non-mapped_reads”,total;for(read in count) 
{print read,count[read] + 0}}’ | sort -k2,2nr | head -11

> done 

6|	 Read density visualization. Mapped reads from BAM (and associated BAI) files can directly be visualized in most genome 
browsers (e.g., UCSC Genome Browser); note that for across-species comparisons, read translation must first be performed, as 
described in Box 1.
Visualize the read density with BigWig files (compressed binary version of WIG files) by extending the reads to the average 
length of the genomic fragments known a priori or determined during peak calling (Step 8) and counting the number of reads 
at each position in the genome normalized to the total number of mapped reads in the library. This density file can also be 
visualized in most genome browsers.

> for sample in chip_dmel input_dmel; do 

>        EXTEND = 150

>        # Number of reads

>        librarySize = $(samtools idxstats ${sample}.bam | awk ‘{total +  = $3}END{print 
total}’)

>        # Create density file: extend reads, calculate read density at each position 
and normalize the library size to 1 million reads

>        bamToBed -i ${sample}.bam | awk -vCHROM = “dm3.chrom.sizes” -vEXTEND = $EXTEND 
-vOFS = ‘\t’

‘BEGIN{while(getline>CHROM){chromSize[$1] = $2}}{chrom = $1;start = $2;end = $3; 
strand = $6;if(strand =  = “ + ”){end = start + EXTEND;if(end>chromSize[chrom]){end =  
chromSize[chrom]}};if(strand =  = “ − ”){start = end-EXTEND;if(start>1){start = 1}};print 
chrom,start,end}’ | sort -k1,1 -k2,2n | genomeCoverageBed -i stdin -g dm3.chrom.
sizes -d | awk -vOFS = ‘\t’ -vSIZE = $librarySize ‘{print $1,$2,$2 + 1,$3*1000000/SIZE}’  
| > gzip > ${sample}.density.gz

Box 1 | Continued
3. Read density visualization. Create density files (as in Step 6 of the main PROCEDURE) for visualization.
> for sample in chip_dyak_dm3 input_dyak_dm3; do

>          EXTEND = 150

>          # Number of reads

>          librarySize = $(samtools idxstats ${sample}.bam | awk ‘{total +  = $3}END 

{print total}’)

>          # Create density file: extend reads, calculate read density at each position and 

normalize the library size to 1 million reads

>          bamToBed -i ${sample}.bam | awk -vCHROM = “dm3.chrom.sizes” -vEXTEND = $EXTEND  

-vOFS = ‘\t’ ‘BEGIN{while(getline>CHROM){chromSize[$1] = $2}}{chrom = $1;start = $2;end  

= $3;strand = $6;if(strand =  = “ + ”){end = start + EXTEND;if(end>chromSize[chrom]){end =  

chromSize[chrom]}};if(strand =  = “ − ”){start = end-EXTEND;if(start>1){start = 1}};print 

chrom,start,end}’ | sort -k1,1 -k2,2n | genomeCoverageBed -i stdin -g dm3.chrom.sizes -d  

| awk -vOFS = ‘\t’ -vSIZE = $librarySize ‘{print $1,$2,$2 + 1,$3*1000000/SIZE}’ | gzip > $ 

{sample}.density.gz

>          # Create WIG file

>          gunzip -c ${sample}.density.gz | awk -vOFS = ‘\t’ ‘($4! = 0){if(!chrom[$1]) 

{print “variableStep chrom = ”$1;chrom[$1] = 1};print $2,$4}’ | gzip > ${sample}.wig.gz

>          # Create BigWig file

>          wigToBigWig ${sample}.wig.gz dm3.chrom.sizes ${sample}.bw

>          # Remove intermediate file

>          rm ${sample}.wig.gz

>done
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>        # Create WIG file

>        gunzip -c ${sample}.density.gz | awk -vOFS = ‘\t’ ‘($4! = 0) 
{if(!chrom[$1]){print “variableStep chrom = ”$1;chrom[$1] = 1};print $2,$4}’ | gzip  
> ${sample}.wig.gz

>        # Create BigWig file

>        wigToBigWig ${sample}.wig.gz dm3.chrom.sizes ${sample}.bw

>        # Remove intermediate file

>        rm ${sample}.wig.gz

> done 

Assessing global reproducibility and similarity ● TIMING ~15 min
7|	 PCC. Calculate the PCC between the normalized extended read counts at each position in the reference genome for every 
pair of samples.
 CRITICAL STEP Exclude positions with zeros in both samples (e.g., repeat regions), as this would artificially increase the 
correlation coefficient.
 CRITICAL STEP When comparing distant species between which only a fraction of the respective genome coordinates can 
be translated, we recommend repeating the analysis with the translatable (i.e., alignable) genomic regions only.

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3 chip_dmel-chip_dyak_
dm3; do 

>        echo -en $sample“\t”

>        chip = $(echo $pair | sed ‘s/-.*//’)

>        input = $(echo $pair | sed ‘s/.*-//’)

>        paste <(gunzip -c ${chip}.density.gz) <(gunzip -c ${input}.density.gz) | awk 
‘{if($2! = $6){exit 1};if($4! = 0||$8! = 0){print $4,$8}} 
’ | correlation.awk

> done 

Peak calling and conservation analysis ● TIMING ~30 min
8|	 Peak calling. For each immunoprecipitation sample and its corresponding input control sample, call peaks using MACS, 
with a stringent FDR threshold (e.g., FDR ≤ 1%) to identify confident peaks and with the default P value (10 − 5) to identify 
regions with nonrandom enrichments. Create control peaks by shifting peaks to random locations.
? TROUBLESHOOTING
> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        echo -en $pair“\t”

>        chip = $(echo $pair | sed ‘s/-.*//’)

>        input = $(echo $pair | sed ‘s/.*-//’)

>        # Run MACS

>        GEN_SIZE = $(awk ‘{size +  = $2}END{print size}’ dm3.chrom.sizes)

>        READ_LEN = 36

>        PVALUE = 1e-5

>        MFOLD = 4 # Maximum possible

>        macs -t ${chip}.bam -c ${input}.bam --name = ${pair}_macs_p05 --format = BAM --
gsize = $GEN_SIZE --tsize = $READ_LEN --pvalue = $PVALUE --mfold = $MFOLD 2> ${pair}_macs_
p05.log

>        # Print shift d (2*d  =  genomic fragment length)

>        grep “# d  =  ” ${pair}_macs_p05_peaks.xls | awk ‘{print $4}’

>        # Check warnings

>        grep “WARNING” ${pair}_macs_p05.log

>        # Remove intermediate files
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>        rm ${pair}_macs_p05{.log,_model.r,_negative_peaks.xls,_peaks.bed}

> done 

> # Number of peaks at different FDR thresholds 

> (echo -e “FDR\tAll\t5\t1\t0” 

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        echo -en $pair

>        for fdr in 100 5 1 0; do

>        echo -en “\t”$(grep -v “#” ${pair}_macs_p05_peaks.xls | awk -vFDR = $fdr 
‘(NR>1&&$9> = FDR)’ | wc -l)

>        done

>        echo

> done) 

> # Define confident peaks (FDR), enriched regions (P-value> = 10e-5) and control peaks 

> FDR = 1 

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        # Confident peaks

>        grep -v “#” ${pair}_macs_p05_peaks.xls | awk -vOFS = ‘\t’ -vFDR = $FDR ‘ 
(NR>1&&$9> = FDR){if($2>1){$2 = 1};print $1,$2,$3,$5,$7,$8,$9}’ > ${pair}_macs_ 
confident.txt

>        # Regions with significant enrichment

>        grep -v “#” ${pair}_macs_p05_peaks.xls | awk -vOFS = ‘\t’ ‘(NR>1)  
{if($2>1) {$2 = 1};print $1,$2,$3,$5,$7,$8,$9}’ > ${pair}_macs_enrichment.txt

>        # Control peaks

>        shuffleBed -i ${pair}_macs_enrichment.txt -g dm3.chrom.sizes -chrom | sort -
k1,1 -k2,2n > ${pair}_macs_control.txt

> done 

9|	 Peak visualization. Visualize the confident peaks and enriched regions along with the read densities by creating BED files 
that can be uploaded to most genome browsers.

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        # Create BED files

>        (echo -e “track name = \”${pair}_confident_peaks\“ description = \”${pair}_ 
confident_peaks\“ visibility = 2”

>        sort -k5,5gr ${pair}_macs_confident.txt | awk -vOFS = ‘\t’ ‘ {print 
$1,$2,$3,“PEAK_“NR,$5,”.”}’ | sort -k1,1 -k2,2n) | gzip > ${pair}_macs_confident. 
bed.gz

>        (echo -e “track name = \”${pair}_enriched_regions\“ description = \”${pair}_ 
enriched_regions\“ visibility = 2”

>        sort -k5,5gr ${pair}_macs_enrichment.txt | awk -vOFS = ‘\t’ ‘{print 
$1,$2,$3,“PEAK_“NR,$5,”.”}’ | sort -k1,1 -k2,2n) | gzip > ${pair}_macs_ 
enrichment.bed.gz

> done 

10| Peak conservation. Calculate a conservation rate between two conditions A and B as the percentage of confidently 
identified peaks in condition A that show nonrandom enrichment in condition B. To exclude counting of spurious overlaps 
of peak tails, we require that the summit of the peak overlaps a region with nonrandom enrichment. Calculate the conserva-
tion for control peaks as well. Note that if the number of peaks is very different between two conditions, the rate of binding 
conservation depends on which sample is chosen as the reference sample.
? TROUBLESHOOTING
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> reference = chip_dmel-input_dmel 

> sample = chip_dyak_dm3-input_dyak_dm3 

> # Overlap summit of reference confident peaks with sample enriched regions and  
reference control peaks 

> TOTAL = $(cat ${reference}_macs_confident.txt | wc -l) 

> awk -vOFS = ‘\t’ ‘{$2 = $2 + $4;$3 = $2 + 1;print $0}’ ${reference}_macs_confident.txt |  
intersectBed -a stdin -b ${sample}_macs_enrichment.txt | wc -l | awk -vTO 
TAL = $TOTAL ‘{print TOTAL,$1,$1*100/TOTAL}’

> awk -vOFS = ‘\t’ ‘{$2 = $2 + $4;$3 = $2 + 1;print $0}’ ${reference}_macs_confident.txt |  
intersectBed -a stdin -b ${reference}_macs_control.txt | wc -l | awk -vTO 
TAL = $TOTAL ‘{print TOTAL,$1,$1*100/TOTAL}’ 

Analysis of quantitative changes ● TIMING ~45 min
11| Define enriched regions. Collapse all peak regions that are independently called in any of the different samples (Step 8) 
by computing the union of all peak coordinates. Score each region for each sample by the highest read count in this region 
normalized to the total number of mapped reads in each sample and to number of reads at that position in the  
corresponding input sample (score even samples that do not have a peak in this region).
 CRITICAL STEP Use a fixed length of peak regions centered on the peaks’ summits to avoid biasing the analysis toward 
longer peak regions (e.g., the average length of the genomic fragments).

> # Define regions with a confident peak in any sample as the region around the peak 
summit 

> SIZE = 75 # around peak summit  =  151 bp ~ genomic fragment length 

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        awk -vOFS = ‘\t’ -vSIZE = $SIZE ‘{s = $2 + $4-SIZE;e = $2 + $4 + SIZE;print $1,s,e}’  
${pair}_macs_confident.txt

> done | sort -k1,1 -k2,2n | mergeBed -i stdin > peak_regions.txt 

> # For each sample and each region add the ratio of chip_read_density / input_read_
density 

> for pair in chip_dmel-input_dmel chip_dyak_dm3-input_dyak_dm3; do 

>        chip = $(echo $pair | sed ‘s/-.*//’)

>        input = $(echo $pair | sed ‘s/.*-//’)

>        # Maximum chip read density for each region

>        gunzip -c ${chip}.density.gz | intersectBed -a peak_regions.txt -b  
stdin -wao | awk ‘{peak = $1“:”$2“:”$3;if(old&&peak! = old) {print max[old] + 0;delete 
max[old]};if((!max[peak])||max[peak]>$(NF-1)){max[peak] = $(NF-1)};old = peak}END {print 
max[old] + 0}’ > tmp_${chip}

>        # Maximum input read density for each region

>        gunzip -c ${input}.density.gz | intersectBed -a peak_regions.txt -b  
stdin -wao | awk ‘{peak = $1“:”$2“:”$3;if(old&&peak! = old){print max[old] + 0;delete 
max[old]};if((!max[peak])||max[peak]>$(NF-1)){max[peak] = $(NF-1)};old = peak}END 
{print max[old] + 0}’ > tmp_${input}

>        # Ratio chip/input

>        paste tmp_${chip}tmp_${input} | awk ‘{if($2 =  = 0){print 
“NA”}else{print$1/$2}}’ | paste peak_regions.txt - > tmp_${pair}

>        mv tmp_${pair}peak_regions.txt

>        rm tmp_${chip}tmp_${input}

> done 

12| Data normalization. For comparisons for which a constant number of binding sites is expected in both samples, remove 
nonmappable regions (i.e., regions without any read in one of the samples) and normalize the peak heights using quantile 
normalization. Otherwise, proceed directly to Step 13.
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> # Remove regions with no reads 

> awk ‘($4! = 0&&$5! = 0)’ peak_regions.txt > peak_regions_no0.txt 

> R # Enter R 

> library(preprocessCore) # Load library 

> table_pre_norm = read.table(“peak_regions_no0.txt”) # Load table 

> table_post_norm = normalize.quantiles(as.matrix(table_pre_norm[,4:5])) # Normalize 
table 

> write.table(cbind(table_pre_norm[,1:3],signif(table_post_norm)),“peak_regions_
norm.txt”,quote = F,sep = “\t”,row.names = F,col.names = F) # Save table 

> q() 

> n 

13| Quantitative changes. Compute the differences between peak heights as log2 fold change. Assign peaks (regions) to  
different quantitative changes categories on the basis of the change in normalized read densities, i.e., as invariant,  
decreasing or increasing (e.g., less than twofold change, twofold lower or twofold higher, respectively).

> # Calculate log2(change) 

> grep -v “NA” peak_regions_norm.txt | awk -vOFS = ‘\t’ ‘{print $0,log($4/$5)/log(2)}’  
> peak_regions_norm_log2.txt 

> # Regions 2 fold higher in Dmel than Dyak 

> awk ‘($6> = 2)’ peak_regions_norm_log2.txt > peak_regions_norm_log2_decrease.txt 

> # Regions with no quantitative changes (within 2 fold) 

> awk ‘($6>-2&&$6>2)’ peak_regions_norm_log2.txt > peak_regions_norm_log2_invariant.txt

> # Regions 2 fold lower in Dmel than Dyak 

> awk ‘($6> = -2)’ peak_regions_norm_log2.txt > peak_regions_norm_log2_increase.txt 

> # Count number of regions 

> wc -l peak_regions_norm_log2_*.txt 

Downstream analyses ● TIMING ~1–3 h
14| Proceed to option A to carry out downstream functional analyses. Proceed to option B to perform sequence analyses.  
Note that options A and B are not mutually exclusive—most users will wish to carry out both functional and sequence analysis.
(A) Functional analysis ● TIMING ~1 h
	 (i) �Overlap with known regions. If a set of known binding sites is available, calculate a conservation rate of peaks that 

overlap with previously known or experimentally verified binding sites (otherwise, proceed directly to Step 14A(ii)). 
First, intersect confident peak coordinates (from Step 8) with coordinates of known binding sites (e.g., using inter-
sectBed from BEDTools) to determine the peaks that do and do not overlap with the known sites. Then calculate the 
average conservation rate in both classes of peaks. We suggest using a set of known enhancers or previously defined 
ChIP regions9.

	 (ii) �Peak location. Calculate a conservation rate of peaks according to their genomic annotation (i.e., intergenic, intronic, 
3 untranslated region (UTR), 5 UTR, 2 kb promoter, coding sequence (CDS)) using genome annotation data. First, use 
the annotation file (e.g., GFF file containing coordinates for each type of regions) to extract the relevant annotations. 
Next, annotate each genomic location uniquely using priorities for potentially overlapping annotations (e.g., first: 
CDS, second: 5 UTR, third: 3 UTR, fourth: intron and fifth: promoter as 2-kb regions upstream gene TSSs stopping at 
the next gene; rest: intergenic). Overlap the confident peak regions (from Step 8) with those annotations (i.e., inter-
sect region coordinates using intersectBed from BEDTools) and assign each peak to a specific annotation if at least 
50% of the peak’s region overlaps with this annotation. For each annotation type, calculate the conservation rate of 
all associated peaks.

	 (iii) �Peak-to-TSS and peak-to-peak distance. Calculate a conservation rate of confident peaks (from Step 8) according to 
their distance to the nearest gene TSS and the distance to the nearest neighboring peak (e.g., using closestBed from 
BEDTools). Distance bins can be defined as 0–0.5, 0.5–2, 2–5, 5–10, 10–20 and >20 kb. Note that each bin will con-
tain a different number of peaks, such that only the relative number of conserved peaks (i.e., the conservation rate) 
can be meaningfully compared.
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	 (iv) �Peak-to-gene assignment. Assign each confident peak (from Step 8) to its closest gene TSS (e.g., using closestBed from 
BEDTools). If insulator data for the corresponding condition are available, assign each peak to its closest gene TSS 
only within regions separated by insulators9. Note that some peaks will not be assigned to any gene and some genes 
will have multiple peaks assigned to them.

	 (v) �Expression analysis. Compare the conservation rates of peaks and control peaks (from Step 8) assigned to genes that 
are in particular functional groups. To analyze how conservation of binding correlates with genes that are regulated by 
the transcription factor, we suggest using expression data for the transcription factor.

	 (vi) �GO analysis. Compare the conservation rates of peaks and control peaks (from Step 8) assigned to genes in different 
GO categories (e.g., GO categories assigned to the function of the studied transcription factor). 
 CRITICAL STEP Be careful to not double-count peaks for a given category.

(B) Sequence analysis ● TIMING ~2 h
	 (i) �De novo motif discovery. Search confident peaks (from Step 8) de novo for motifs (e.g., using MEME-ChIP). If the samples  

are compared across species (i.e., in different genomes) and multiple sequence alignments (e.g., from UCSC) are  
available, search for k-mers that are substantially more highly conserved in peaks than in control peaks (from Step 8). 
 CRITICAL STEP For Steps 14B(i–iii), use a fixed length of peak regions centered on the peaks’ summits to avoid 
biasing the analysis toward longer peak regions (e.g., the average length of the genomic fragments).

	 (ii) �Known motif search. By using known motif PWMs (e.g., motifs from TRANSFAC34 and/or JASPAR35 databases), search 
confident peak regions (from Step 8) for overrepresented motifs (e.g., using MAST) compared with their control motifs 
(i.e., shuffling columns of motif PWMs) or in control peaks (from Step 8).

	 (iii) �Sequence conservation. If multiple sequence alignments (e.g., from UCSC) are available, calculate the sequence 
conservation of confident peak regions, control peak regions (from Step 8) and individual motif occurrences within 
those peak regions. We use both the PhastCons score and sequence identity calculated from the multiple sequence 
alignment9. Convert the PhastCons WIG file from UCSC to a BED file and fill in missing genomic positions with ‘zero’, 
intersect it with the peak region (e.g., using intersectBed from BEDTools) and calculate an average PhastCons score 
for each peak region. Identify motifs and control motifs (i.e., shuffling columns of motif PWMs) for the transcription 
factor of interest and its partners that are substantially more conserved in conserved peaks than in condition-specific 
peaks, the average genome and control peaks (from Steps 8 and 9). For data in different species, assess the type of 
motif sequence changes (i.e., mutations, insertions and deletions) in the multiple sequence alignment. In addition, 
for each binding changes category (from quantitative changes at Step 13), assess the change in quality of their motifs 
using the differential motif scores (e.g., using MAST).

? TROUBLESHOOTING
Troubleshooting advice is provided in Table 1.

● TIMING
Steps 1 and 2, Data preprocessing: ~10 min
Steps 3–6, Read mapping and visualization: ~1 h
Box 1, Translation to common coordinates: A, ~36 h; or B, ~8 h

Table 1 | Troubleshooting table.

Step Problem Possible reason Solution

4, Box 1 Program takes a long time 
to run

Large input files Run the program for each input file in parallel 
and/or split the input file(s) into several smaller 
files to further parallelize the task

8 No peaks found at FDR 
threshold of 1%

FDR estimates the fraction of random 
(i.e., likely to be wrong) peaks among 
the final peaks and is often estimated 
empirically (e.g., by MACS)

An FDR of 5% is also acceptable. If still no peaks 
are found, the ChIP sample might be of poor  
quality (e.g., low signal-to-noise ratios) or have a 
low read coverage

Errors in coordinates BED format is 0-based half-open and yet 
many other formats are 1-based closed

Adjust your code accordingly

10 Low conservation of binding 
sites across species

Some peaks are located in regions that 
cannot be uniquely mapped or translated

This problem leads to an underestimation of overall 
binding conservation
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Step 7, Assessing global reproducibility and similarity: ~15 min
Steps 8–10, Peak calling and conservation analysis: ~30 min
Steps 11–13, Analysis of quantitative changes: ~45 min
Step 14A, Functional analysis: ~1 h
Step 14B, Sequence analysis: ~2 h
This timing estimation is given only according to the time necessary to run the code and programs in parallel for the 
Drosophila test set data and using our computational resources. Data from larger genomes will take longer to run especially if 
coordinates are to be translated.

ANTICIPATED RESULTS
Data preprocessing
The median quality score of the reads should be around 40 and stay stable or at most slightly degrade along the read length 
(e.g., to around 20). The nucleotide distribution should be equally distributed with only very few unknown nucleotides  
(Ns, typically below 1%). A bias might stem from the overrepresentation of a unique read that is repeated many times  
(e.g., the linker sequence). Deviations might explain low read-matching frequencies in later steps (Steps 4 and 5).

A high percentage of unique reads (we typically find ≥50% for ChIP samples and ≥ 75% for input samples in Drosophila) is 
a good sign, although it can decrease with very high numbers of reads (around 20 million or more) and small genomes  
(e.g., yeast, C. elegans or Drosophila). It is also lower for ChIP-seq experiments with very high signal-to-noise ratios,  
in which many reads are confined to specific regions of the genome. A low percentage of unique reads (below 50%) may 
indicate that the library was prepared from too little DNA and/or that PCR amplification artifacts occurred.

Read mapping
The percentage of mapped reads and the percentage of unique read coordinates should be as high as possible. Reads that 
cannot be mapped might be linker sequences, sample contaminations or low-complexity sequences, which correspond to 
repeated regions of the genome that are more frequent in vertebrates than in Drosophila. To provide a range of expected 
numbers for mapped reads, Table 2 and Supplementary Table 1 show the number of raw reads, mapped reads and unique 
reads for the Drosophila Twist test data set9 and for one vertebrate transcription factor data set10. Between 44% and 75% of 
the reads in vertebrates and 75% and 81% in Drosophila of the raw reads could be mapped.

To assess more systematically the uniqueness of genome sequences in the Drosophila genome independent of any ChIP-seq 
experiment, we also determined the percentage of all potential 36-nucleotide-long reads (i.e., all 36mers created from the 
reference genomes in one-nucleotide steps) that could be mapped back uniquely to the respective genome using Bowtie37 
and the genome coverage they represent (Supplementary Table 2). The number of mapped reads and the corresponding  
genome coverage are high in all species. For D. melanogaster, we also mapped 18-nucleotide-long potential reads  
(i.e., shorter reads) yielding a minor decrease in genome coverage. Note that the current assembly state of the D. erecta and 
D. ananassae genomes (5,124 and 13,749 scaffolds, respectively) can explain their lower genome coverage.

Table 2 | Results for the test data set we provide.

He et al.9, Twist
Raw  
reads

Mapped  
reads

Unique  
reads

Translated 
reads

Confident 
peaks

Enriched 
regions

Conservation 
(%)

chip_dmel 6924965 5631684 3901384 —

81% 69% 3447 10352

input_dmel 8594417 6975843 6072881 —

81% 87% 74

chip_dyak 8784288 6593674 4614002 4957524 Control 6

75% 70% 75% 758 9126

input_dyak 12567553 10016367 7974239 7284163

80% 80% 73%
Note that the results from the test data set differ from the ones from He et al.9 because of the use of a different read mapper and a different version of the peak-calling program MACS.
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Translation to common coordinates
A general concern is the sensitivity by which genome  
coordinates can be translated (e.g., using LiftOver).  
Independent of any ChIP-seq experiment, we determined the 
percentage of all potential 36-nucleotide-long reads and the 
corresponding ones that could be remapped from various 
Drosophila species (see above) that could be unambiguously 
translated into D. melanogaster coordinates for cross-species comparisons (Supplementary Table 3). The numbers are  
shown for all potential reads or only those that can be uniquely mapped back to the genome. The fraction of translatable 
reads generally drops with further distant species, as expected, given the lower genome sequence similarity. These numbers 
are similar to actual numbers from ChIP-seq experiments. Table 2 shows the number of translated reads for the Drosophila 
test data set, and Supplementary Table 1 shows the number of reads from vertebrate transcription factor ChIP-seq data that 
can be translated to the human genome. For a given species, the numbers are remarkably constant for different data sets; 
e.g., ~50% read translation from mouse to human.

Although read translation generally works well, it is also clear that some genomic regions cannot be translated between 
different genomes, thereby potentially leading to an underestimation of conservation of the reference species’ binding sites. 
When analyzing more distant species, lowering LiftOver’s minmatch parameter, i.e., the minimum percent sequence identity 
required between regions, might help.

In general, we found that using a common reference genome worked well in comparative ChIP-seq analyses.

PCC analysis
The PCC between biological replicates measures the reproducibility between experiments and provides an upper bound for 
the global similarity of binding across conditions or species (e.g., ≥0.9 in our experience). The pairwise PCC between ChIP 
samples and input samples serves as a lower bound for the global similarity of binding. Note that there is usually a positive  
PCC between any two samples (e.g., approximately 0.3–0.4 in our experience) because of similar chromatin accessibility 
and intrinsic biases in the experimental procedure. Most notably, the DNA is not fragmented randomly during the sonication 
step46,47, and CG-rich fragments are favored during the PCR amplification and/or the cluster generation step during next- 
generation sequencing48. The difference between the upper bound and lower bound of the PCCs also serves as quality control 
for the ChIP-seq data set. In a high-quality ChIP experiment, the PCC between two replicate ChIP samples far exceeds the 
correlation with input sample (e.g., 0.9 versus 0.4). Poor ChIP samples, on the other hand, more closely resemble the input 
sample (see Experimental design).

Peak calling and conservation analysis
The number of called peaks for the Drosophila test data set we provide with this protocol are found in Table 2. When cal
culating conservation estimates, it is important to check that biological replicates have high binding conservation rates 
close to 100%, and that control peaks have low conservation rates (~10%) depending on the genome size.

Figure 3 shows analyses and anticipated results to assess whether the chosen thresholds yield adequate conservation 
rates. When merely overlapping high-confident peaks from two samples, a large number of peaks appear nonconserved even 
between biological replicates (Fig. 3a, gray). These apparently nonconserved peaks have high read counts relative to the 

genome average (Fig. 3b), and these are specifically located 
at the position corresponding to the peak summit of the 
reference sample (Fig. 3c). This argues that these peaks are 
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in fact conserved, and that their conservation has been missed because of overly stringent thresholds. In contrast, when  
assessing conservation via enriched read counts, we find 98% conservation for biological replicates (Fig. 3d, purple) and 
81% and 60% across species, respectively (Fig. 3d, green and orange; random regions are gray). We conclude that our  
approach yields accurate and sensitive conservation estimates.

Note, however, that peak conservation estimates decrease with peak ranks (Figs. 4 and 5), and thus depend on the total 
number of peaks in the reference sample. This likely results from two trends, namely the increasing number of false-positive 
peaks at lower enrichments in the reference data set and the decreasing ability to discriminate truly conserved peaks from 
noise in the second data set.

We have also tested and confirmed that our approach works similarly well for other data sets, including for comparative 
analyses in vertebrates (Fig. 5) and for analyzing condition-specific binding of a transcription factor in C. elegans (Fig. 6). 
In vertebrate comparative analyses, our approach to making comparisons across data sets with more sensitive thresholds  
performs better than merely intersecting peaks called at identical thresholds (Fig. 5) and allows a sensitive assessment 
of peak conservation for a wide range of thresholds. It also allows a more sensitive assessment of the number of shared 
PHA4/FOXA-binding peaks between embryos and larvae in the C. elegans data sets (Fig. 6a). Note that the number of peaks 
is higher in the larva sample than in the embryo, and thus the fraction of shared peaks differs depending on which condition 
is used as a reference. For example, the ChIP-seq quality may differ between samples and produce different numbers of peaks 
during peak calling. In such a case, conservation estimates appear to differ depending on which sample is chosen as a  
reference sample9. However, we found no evidence that the size of the genome (e.g., the large size of the D. ananassae  
genome) produces a bias in the conservation rates when chosen as reference.

Quantitative changes analysis
Results from the analysis of quantitative changes of Twist binding between Drosophila species have been published7,11.  
To show the applicability of these results across conditions, we used our approach to analyze the condition-specific binding 
of the C. elegans transcription factor PHA4/FOXA. Figure 6b shows a histogram of the fold change in read-count enrichments 
between the two stages. There are more regions that are more than twofold bound in larvae than in embryos, which is  
consistent with the increased number of peaks detected in larvae.
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Note: Supplementary information is available via the HTML version of this article.
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